
LVMVDO(7) LVMVDO(7)

NAME
lvmvdo — EXPERIMENTAL LVM Virtual Data Optimizer support

DESCRIPTION
VDO (which includes kvdo and vdo) is software that provides inline block-level deduplication, compres-

sion, and thin provisioning capabilities for primary storage.

Deduplication is a technique for reducing the consumption of storage resources by eliminating multiple

copies of duplicate blocks. Compression takes the individual unique blocks and shrinks them with coding

algorithms; these reduced blocks are then efficiently packed together into physical blocks. Thin provision-

ing manages the mapping from LBAs presented by VDO to where the data has actually been stored, and

also eliminates any blocks of all zeroes.

With deduplication, instead of writing the same data more than once each duplicate block is detected and

recorded as a reference to the original block. VDO maintains a mapping from logical block addresses (used

by the storage layer above VDO) to physical block addresses (used by the storage layer under VDO). After

deduplication, multiple logical block addresses may be mapped to the same physical block address; these

are called shared blocks and are reference-counted by the software.

With VDO’s compression, multiple blocks (or shared blocks) are compressed with the fast LZ4 algorithm,

and binned together where possible so that multiple compressed blocks fit within a 4 KB block on the un-

derlying storage. Mapping from LBA is to a physical block address and index within it for the desired com-

pressed data. All compressed blocks are individually reference counted for correctness.

Block sharing and block compression are invisible to applications using the storage, which read and write

blocks as they would if VDO were not present. When a shared block is overwritten, a new physical block is

allocated for storing the new block data to ensure that other logical block addresses that are mapped to the

shared physical block are not modified.

For usage of VDO with lvm(8) standard VDO userspace tools vdoformat(8) and currently non-standard

kernel VDO module "kvdo" needs to be installed on the system.

The "kvdo" module implements fine-grained storage virtualization, thin provisioning, block sharing, and

compression; the "uds" module provides memory-efficient duplicate identification. The userspace tools in-

clude vdostats(8) for extracting statistics from those volumes.

VDO Terms
VDODataLV

VDO data LV

large hidden LV with suffix _vdata created in a VG.

used by VDO target to store all data and metadata blocks.

VDOPoolLV

VDO pool LV

maintains virtual for LV(s) stored in attached VDO data LV and it has same size.

contains VDOLV(s) (currently supports only a single VDOLV).

VDOLV

VDO LV

created from VDOPoolLV

appears blank after creation

Red Hat, Inc LVM TOOLS 2.03.07(2) (2019-11-30) 1

LVMVDO(7) LVMVDO(7)

VDO Usage
The primary methods for using VDO with lvm2:

1. Create VDOPoolLV with VDOLV
Create an VDOPoolLV that will holds VDO data together with virtual size VDOLV, that user can use.

When the virtual size is not specified, then such LV is created with maximum size that always fits into data

volume even if there cannot happen any deduplication and compression (i.e. it can hold uncompressible

content of /dev/urandom). When the name of VDOPoolLV is not specified, it tales name from sequence of

vpool0, vpool1 ...

Note: As the performance of TRIM/Discard operation is slow for large volumes of VDO type, please try to

avoid sending discard requests unless necessary as it may take considerable amount of time to finish discard

operation.

lvcreate −−type vdo −n VDOLV −L DataSize −V LargeVirtualSize VG/VDOPoolLV
lvcreate −−vdo −L DataSize VG

Example

lvcreate −−type vdo −n vdo0 −L 10G −V 100G vg/vdopool0

mkfs.ext4 −E nodiscard /dev/vg/vdo0

2. Create VDOPoolLV and convert existing LV into VDODataLV
Convert an already created/existing LV into a volume that can hold VDO data and metadata (a volume ref-

erence by VDOPoolLV). User will be prompted to confirm such conversion as it is IRREVERSIBLY DE-
STROYING content of such volume, as it’s being immediately formatted by vdoformat(8) as VDO pool

data volume. User can specify virtual size of associated VDOLV with this VDOPoolLV. When the virtual

size is not specified, it will set to the maximum size that can keep 100% uncompressible data there.

lvconvert −−type vdo−pool −n VDOLV −V VirtualSize VG/VDOPoolLV
lvconvert −−vdopool VG/VDOPoolLV

Example

lvconvert −−type vdo−pool −n vdo0 −V10G vg/existinglv

3. Change default setting used for creating VDOPoolLV
VDO allows to set large variety of option. Lots of these setting can be specified by lvm.conf or profile set-

tings. User can prepare number of different profiles and just specify profile file name. Check output of

lvmconfig −−type full for detailed description of all individual vdo settings.

Example

cat <<EOF > vdo.profile

allocation {

vdo_use_compression=1

vdo_use_deduplication=1

vdo_use_metadata_hints=1

vdo_minimum_io_size=4096

vdo_block_map_cache_size_mb=128

vdo_block_map_period=16380

vdo_check_point_frequency=0

vdo_use_sparse_index=0

vdo_index_memory_size_mb=256

vdo_slab_size_mb=2048

vdo_ack_threads=1

Red Hat, Inc LVM TOOLS 2.03.07(2) (2019-11-30) 2

LVMVDO(7) LVMVDO(7)

vdo_bio_threads=1

vdo_bio_rotation=64

vdo_cpu_threads=2

vdo_hash_zone_threads=1

vdo_logical_threads=1

vdo_physical_threads=1

vdo_write_policy="auto"

vdo_max_discard=1

}

EOF

lvcreate −−vdo −L10G −−metadataprofile vdo.profile vg/vdopool0

lvcreate −−vdo −L10G −−config ’allocation/vdo_cpu_threads=4’ vg/vdopool1

4. Change compression and deduplication of VDOPoolLV
Disable or enable compression and deduplication for VDO pool LV (the volume that maintains all VDO

LV(s) associated with it).

lvchange −−compression [y|n] −−deduplication [y|n] VG/VDOPoolLV

Example

lvchange −−compression n vg/vdpool0

lvchange −−deduplication y vg/vdpool1

4. Checking usage of VDOPoolLV
To quickly check how much data of VDOPoolLV are already consumed use lvs(8). Field Data% will report

how much data occupies content of virtual data for VDOLV and how much space is already consumed with

all the data and metadata blocks in VDOPoolLV. For a detailed description use vdostats(8) command.

Note: vdostats(8) currently understands only /dev/mapper device names.

Example

lvcreate −−type vdo −L10G −V20G −n vdo0 vg/vdopool0

mkfs.ext4 −E nodiscard /dev/vg/vdo0

lvs −a vg

LV VG Attr LSize Pool Origin Data%

vdo0 vg vwi−a-v−−− 20.00g vdopool0 0.01

vdopool0 vg dwi-ao−−−− 10.00g 30.16

[vdopool0_vdata] vg Dwi-ao−−−− 10.00g

vdostats −−all /dev/mapper/vg-vdopool0

/dev/mapper/vg-vdopool0 :

version : 30

release version : 133524

data blocks used : 79

...

4. Extending VDOPoolLV size
Adding more space to hold VDO data and metadata can be made via extension of VDODataLV with com-

mands lvresize(8), lvextend(8).

Note: Size of VDOPoolLV cannot be reduced.

Red Hat, Inc LVM TOOLS 2.03.07(2) (2019-11-30) 3

LVMVDO(7) LVMVDO(7)

lvextend −L+AddingSize VG/VDOPoolLV

Example

lvextend −L+50G vg/vdopool0

lvresize −L300G vg/vdopool1

4. Extending or reducing VDOLV size
VDO LV can be extended or reduced as standard LV with commands lvresize(8), lvextend(8), lvreduce(8).

Note: Reduction needs to process TRIM for reduced disk area to unmap used data blocks from

VDOPoolLV and it may take a long time.

lvextend −L+AddingSize VG/VDOLV
lvreduce −L-ReducingSize VG/VDOLV

Example

lvextend −L+50G vg/vdo0

lvreduce −L-50G vg/vdo1

lvresize −L200G vg/vdo2

5. Component activation of VDODataLV
VDODataLV can be activated separately as component LV for examination purposes. It activates data LV in

read-only mode and cannot be modified. If the VDODataLV is active as component, any upper LV using

this volume CANNOT be activated. User has to deactivate VDODataLV first to continue to use

VDOPoolLV.

Example

lvchange −ay vg/vpool0_vdata

lvchange −an vg/vpool0_vdata

VDO Topics
1. Stacking VDO

User can convert/stack VDO with existing volumes.

2. VDO on top of raid
Using Raid type LV for VDO Data LV.

Example

lvcreate −−type raid1 −L 5G −n vpool vg

lvconvert −−type vdo−pool −V 10G vg/vpool

3. Caching VDODataLV, VDOPoolLV
Cache VDO Data LV (accepts also VDOPoolLV.

Example

lvcreate −L 5G −V 10G −n vdo1 vg/vpool

lvcreate −−type cache−pool −L 1G −n cpool vg

lvconvert −−cache −−cachepool vg/cpool vg/vpool

lvconvert −−uncache vg/vpool

Red Hat, Inc LVM TOOLS 2.03.07(2) (2019-11-30) 4

LVMVDO(7) LVMVDO(7)

3. Caching VDOLV
Cache VDO LV.

Example

lvcreate −L 5G −V 10G −n vdo1 vg/vpool

lvcreate −−type cache−pool −L 1G −n cpool vg

lvconvert −−cache −−cachepool vg/cpool vg/vdo1

lvconvert −−uncache vg/vdo1

SEE ALSO
lvm(8), lvm.conf(5), lvmconfig(8), lvcreate(8), lvconvert(8), lvchange(8), lvextend(8), lvreduce(8), lvre-
size(8), lvremove(8), lvs(8), vdo(8), vdoformat(8), vdostats(8), mkfs(8)

Red Hat, Inc LVM TOOLS 2.03.07(2) (2019-11-30) 5

