
IP−ROUTE(8) Linux IP−ROUTE(8)

NAME
ip-route − routing table management

SYNOPSIS
ip [ip-OPTIONS] route { COMMAND | help }

ip route { show | flush } SELECTOR

ip route save SELECTOR

ip route restore

ip route get ROUTE_GET_FLAGS ADDRESS [from ADDRESS iif STRING] [oif STRING] [mark

MARK] [tos TOS] [vrf NAME] [ipproto PROT OCOL] [sport NUMBER] [dport

NUMBER]

ip route { add | del | change | append | replace } ROUTE

SELECTOR := [root PREFIX] [match PREFIX] [exact PREFIX] [table TABLE_ID] [vrf NAME] [
proto RTPROT O] [type TYPE] [scope SCOPE]

ROUTE := NODE_SPEC [INFO_SPEC]

NODE_SPEC := [TYPE] PREFIX [tos TOS] [table TABLE_ID] [proto RTPROT O] [scope SCOPE]
[metric METRIC] [ttl-propagate { enabled | disabled }]

INFO_SPEC := { NH | nhid ID } OPTIONS FLAGS [nexthop NH] ...

NH := [encap ENCAP] [via [FAMILY] ADDRESS] [dev STRING] [weight NUMBER] NHFLAGS

FAMILY := [inet | inet6 | mpls | bridge | link]

OPTIONS := FLAGS [mtu NUMBER] [advmss NUMBER] [as [to] ADDRESS] rtt TIME] [rttvar

TIME] [reordering NUMBER] [window NUMBER] [cwnd NUMBER] [ssthresh

NUMBER] [realms REALM] [rto_min TIME] [initcwnd NUMBER] [initrwnd

NUMBER] [features FEATURES] [quickack BOOL] [congctl NAME] [pref

PREF] [expires TIME] [fastopen_no_cookie BOOL]

TYPE := [unicast | local | broadcast | multicast | throw | unreachable | prohibit | blackhole | nat]

TABLE_ID := [local| main | default | all | NUMBER]

SCOPE := [host | link | global | NUMBER]

NHFLAGS := [onlink | pervasive]

RTPROT O := [kernel | boot | static | NUMBER]

FEATURES := [ecn |]

PREF := [low | medium | high]

ENCAP := [ENCAP_MPLS | ENCAP_IP | ENCAP_BPF | ENCAP_SEG6 | ENCAP_SEG6LOCAL]

iproute2 13 Dec 2012 1

IP−ROUTE(8) Linux IP−ROUTE(8)

ENCAP_MPLS := mpls [LABEL] [ttl TTL]

ENCAP_IP := ip id TUNNEL_ID dst REMOTE_IP [src SRC] [tos TOS] [ttl TTL]

ENCAP_BPF := bpf [in PROG] [out PROG] [xmit PROG] [headroom SIZE]

ENCAP_SEG6 := seg6 mode [encap | inline | l2encap] segs SEGMENTS [hmac KEYID]

ENCAP_SEG6LOCAL := seg6local action SEG6_ACTION [SEG6_ACTION_PARAM]

ROUTE_GET_FLAGS := [fibmatch]

DESCRIPTION
ip route is used to manipulate entries in the kernel routing tables.

Route types:

unicast - the route entry describes real paths to the destinations covered by the route
prefix.

unreachable - these destinations are unreachable. Packets are discarded and the ICMP
message host unreachable is generated. The local senders get an EHOSTUNREACH

error.

blackhole - these destinations are unreachable. Packets are discarded silently. The lo-
cal senders get an EINVAL error.

prohibit - these destinations are unreachable. Packets are discarded and the ICMP mes-
sage communication administratively prohibited is generated. The local senders get an
EACCES error.

local - the destinations are assigned to this host. The packets are looped back and deliv-
ered locally.

broadcast - the destinations are broadcast addresses. The packets are sent as link
broadcasts.

throw - a special control route used together with policy rules. If such a route is se-
lected, lookup in this table is terminated pretending that no route was found. Without
policy routing it is equivalent to the absence of the route in the routing table. The pack-
ets are dropped and the ICMP message net unreachable is generated. The local senders
get an ENETUNREACH error.

nat - a special NAT route. Destinations covered by the prefix are considered to be
dummy (or external) addresses which require translation to real (or internal) ones be-
fore forwarding. The addresses to translate to are selected with the attribute via. Warn-

ing: Route NAT is no longer supported in Linux 2.6.

iproute2 13 Dec 2012 2

IP−ROUTE(8) Linux IP−ROUTE(8)

anycast - not implemented the destinations are anycast addresses assigned to this host.
They are mainly equivalent to local with one difference: such addresses are invalid
when used as the source address of any packet.

multicast - a special type used for multicast routing. It is not present in normal routing
tables.

Route tables: Linux-2.x can pack routes into several routing tables identified by a number in the range
from 1 to 2ˆ32-1 or by name from the file /etc/iproute2/rt_tables By default all normal routes are inserted
into the main table (ID 254) and the kernel only uses this table when calculating routes. Values (0, 253,
254, and 255) are reserved for built-in use.

Actually, one other table always exists, which is invisible but even more important. It is the local table (ID
255). This table consists of routes for local and broadcast addresses. The kernel maintains this table auto-
matically and the administrator usually need not modify it or even look at it.

The multiple routing tables enter the game when policy routing is used.

ip route add
add new route

ip route change
change route

ip route replace
change or add new one

to TYPE PREFIX (default)

the destination prefix of the route. If TYPE is omitted, ip assumes type unicast. Other
values of TYPE are listed above. PREFIX is an IP or IPv6 address optionally followed
by a slash and the prefix length. If the length of the prefix is missing, ip assumes a full-
length host route. There is also a special PREFIX default - which is equivalent to IP 0/0

or to IPv6 ::/0.

tos TOS

dsfield TOS

the Type Of Service (TOS) key. This key has no associated mask and the longest match is
understood as: First, compare the TOS of the route and of the packet. If they are not
equal, then the packet may still match a route with a zero TOS. TOS is either an 8 bit
hexadecimal number or an identifier from /etc/iproute2/rt_dsfield.

metric NUMBER

preference NUMBER

the preference value of the route. NUMBER is an arbitrary 32bit number, where routes
with lower values are preferred.

table TABLEID

the table to add this route to. TABLEID may be a number or a string from the file
/etc/iproute2/rt_tables. If this parameter is omitted, ip assumes the main table, with the
exception of local, broadcast and nat routes, which are put into the local table by de-
fault.

iproute2 13 Dec 2012 3

IP−ROUTE(8) Linux IP−ROUTE(8)

vrf NAME

the vrf name to add this route to. Implicitly means the table associated with the VRF.

dev NAME

the output device name.

via [FAMILY] ADDRESS

the address of the nexthop router, in the address family FAMILY. Actually, the sense of
this field depends on the route type. For normal unicast routes it is either the true next
hop router or, if it is a direct route installed in BSD compatibility mode, it can be a local
address of the interface. For NAT routes it is the first address of the block of translated IP
destinations.

src ADDRESS

the source address to prefer when sending to the destinations covered by the route prefix.

realm REALMID

the realm to which this route is assigned. REALMID may be a number or a string from
the file /etc/iproute2/rt_realms.

mtu MTU

mtu lock MTU

the MTU along the path to the destination. If the modifier lock is not used, the MTU may
be updated by the kernel due to Path MTU Discovery. If the modifier lock is used, no
path MTU discovery will be tried, all packets will be sent without the DF bit in IPv4 case
or fragmented to MTU for IPv6.

window NUMBER

the maximal window for TCP to advertise to these destinations, measured in bytes. It lim-
its maximal data bursts that our TCP peers are allowed to send to us.

rtt TIME

the initial RTT (’Round Trip Time’) estimate. If no suffix is specified the units are raw
values passed directly to the routing code to maintain compatibility with previous re-
leases. Otherwise if a suffix of s, sec or secs is used to specify seconds and ms, msec or
msecs to specify milliseconds.

rttvar TIME (Linux 2.3.15+ only)

the initial RTT variance estimate. Values are specified as with rtt above.

rto_min TIME (Linux 2.6.23+ only)

the minimum TCP Retransmission TimeOut to use when communicating with this desti-
nation. Values are specified as with rtt above.

ssthresh NUMBER (Linux 2.3.15+ only)

an estimate for the initial slow start threshold.

iproute2 13 Dec 2012 4

IP−ROUTE(8) Linux IP−ROUTE(8)

cwnd NUMBER (Linux 2.3.15+ only)

the clamp for congestion window. It is ignored if the lock flag is not used.

initcwnd NUMBER (Linux 2.5.70+ only)

the initial congestion window size for connections to this destination. Actual window
size is this value multiplied by the MSS (‘‘Maximal Segment Size’’) for same connection.
The default is zero, meaning to use the values specified in RFC2414.

initrwnd NUMBER (Linux 2.6.33+ only)

the initial receive window size for connections to this destination. Actual window size is
this value multiplied by the MSS of the connection. The default value is zero, meaning to
use Slow Start value.

features FEATURES (Linux3.18+only)

Enable or disable per-route features. Only available feature at this time is ecn to enable
explicit congestion notification when initiating connections to the given destination net-
work. When responding to a connection request from the given network, ecn will also be
used even if the net.ipv4.tcp_ecn sysctl is set to 0.

quickack BOOL (Linux 3.11+ only)

Enable or disable quick ack for connections to this destination.

fastopen_no_cookie BOOL (Linux 4.15+ only)

Enable TCP Fastopen without a cookie for connections to this destination.

congctl NAME (Linux 3.20+ only)

congctl lock NAME (Linux 3.20+ only)

Sets a specific TCP congestion control algorithm only for a given destination. If not
specified, Linux keeps the current global default TCP congestion control algorithm, or the
one set from the application. If the modifier lock is not used, an application may never-
theless overwrite the suggested congestion control algorithm for that destination. If the
modifier lock is used, then an application is not allowed to overwrite the specified con-
gestion control algorithm for that destination, thus it will be enforced/guaranteed to use
the proposed algorithm.

advmss NUMBER (Linux 2.3.15+ only)

the MSS (’Maximal Segment Size’) to advertise to these destinations when establishing
TCP connections. If it is not given, Linux uses a default value calculated from the first
hop device MTU. (If the path to these destination is asymmetric, this guess may be
wrong.)

reordering NUMBER (Linux 2.3.15+ only)

Maximal reordering on the path to this destination. If it is not given, Linux uses the value
selected with sysctl variable net/ipv4/tcp_reordering.

nexthop NEXTHOP

the nexthop of a multipath route. NEXTHOP is a complex value with its own syntax sim-
ilar to the top level argument lists:

via [FAMILY] ADDRESS - is the nexthop router.

iproute2 13 Dec 2012 5

IP−ROUTE(8) Linux IP−ROUTE(8)

dev NAME - is the output device.

weight NUMBER - is a weight for this element of a multipath route
reflecting its relative bandwidth or quality.

The internal buffer used in iproute2 limits the maximum number of nexthops that may be
specified in one go. If only ADDRESS is given, the current buffer size allows for 144
IPv6 nexthops and 253 IPv4 ones. For IPv4, this effectively limits the number of nex-
thops possible per route. With IPv6, further nexthops may be appended to the same route
via ip route append command.

scope SCOPE_VAL

the scope of the destinations covered by the route prefix. SCOPE_VAL may be a number
or a string from the file /etc/iproute2/rt_scopes. If this parameter is omitted, ip assumes
scope global for all gatewayed unicast routes, scope link for direct unicast and broad-

cast routes and scope host for local routes.

protocol RTPROT O

the routing protocol identifier of this route. RTPROT O may be a number or a string from
the file /etc/iproute2/rt_protos. If the routing protocol ID is not given, ip assumes pro-

tocol boot (i.e. it assumes the route was added by someone who doesn’t understand what
they are doing). Several protocol values have a fixed interpretation. Namely:

redirect - the route was installed due to an ICMP redirect.

kernel - the route was installed by the kernel during autoconfigura-
tion.

boot - the route was installed during the bootup sequence. If a rout-
ing daemon starts, it will purge all of them.

static - the route was installed by the administrator to override dy-
namic routing. Routing daemon will respect them and, probably, even
advertise them to its peers.

ra - the route was installed by Router Discovery protocol.

The rest of the values are not reserved and the administrator is free to assign (or not to as-
sign) protocol tags.

onlink pretend that the nexthop is directly attached to this link, even if it does not match any in-
terface prefix.

pref PREF

the IPv6 route preference. PREF is a string specifying the route preference as defined in
RFC4191 for Router Discovery messages. Namely:

iproute2 13 Dec 2012 6

IP−ROUTE(8) Linux IP−ROUTE(8)

low - the route has a lowest priority

medium - the route has a default priority

high - the route has a highest priority

nhid ID

use nexthop object with given id as nexthop specification.

encap ENCAPTYPE ENCAPHDR

attach tunnel encapsulation attributes to this route.

ENCAPTYPE is a string specifying the supported encapsulation type. Namely:

mpls - encapsulation type MPLS

ip - IP encapsulation (Geneve, GRE, VXLAN, ...)

bpf - Execution of BPF program

seg6 - encapsulation type IPv6 Segment Routing

seg6local - local SRv6 segment processing

ENCAPHDR is a set of encapsulation attributes specific to the ENCAPTYPE.

mpls

MPLSLABEL - mpls label stack with labels separated by /

ttl TTL - TTL to use for MPLS header or 0 to inherit from IP
header

ip

id TUNNEL_ID dst REMOTE_IP [src SRC] [tos TOS] [ttl

TTL] [key] [csum] [seq]

bpf

in PROG - BPF program to execute for incoming packets

out PROG - BPF program to execute for outgoing packets

xmit PROG - BPF program to execute for transmitted packets

headroom SIZE - Size of header BPF program will attach
(xmit)

iproute2 13 Dec 2012 7

IP−ROUTE(8) Linux IP−ROUTE(8)

seg6

mode inline - Directly insert Segment Routing Header after
IPv6 header

mode encap - Encapsulate packet in an outer IPv6 header with
SRH

mode l2encap - Encapsulate ingress L2 frame within an outer
IPv6 header and SRH

SEGMENTS - List of comma-separated IPv6 addresses

KEYID - Numerical value in decimal representation. See ip-

sr(8).

seg6local

SEG6_ACTION [SEG6_ACTION_PARAM] - Operation to per-
form on matching packets. The following actions are currently
supported (Linux 4.14+ only).

End - Regular SRv6 processing as intermediate segment
endpoint. This action only accepts packets with a non-zero
Segments Left value. Other matching packets are dropped.

End.X nh6 NEXTHOP - Regular SRv6 processing as inter-
mediate segment endpoint. Additionally, forward pro-
cessed packets to given next-hop. This action only accepts
packets with a non-zero Segments Left value. Other match-
ing packets are dropped.

End.DX6 nh6 NEXTHOP - Decapsulate inner IPv6 packet
and forward it to the specified next-hop. If the argument is
set to ::, then the next-hop is selected according to the local
selection rules. This action only accepts packets with either
a zero Segments Left value or no SRH at all, and an inner
IPv6 packet. Other matching packets are dropped.

End.B6 srh segs SEGMENTS [hmac KEYID] - Insert the
specified SRH immediately after the IPv6 header, update
the DA with the first segment of the newly inserted SRH,
then forward the resulting packet. The original SRH is not
modified. This action only accepts packets with a non-zero
Segments Left value. Other matching packets are dropped.

End.B6.Encaps srh segs SEGMENTS [hmac KEYID] -
Regular SRv6 processing as intermediate segment end-
point. Additionally, encapsulate the matching packet
within an outer IPv6 header followed by the specified SRH.
The destination address of the outer IPv6 header is set to

iproute2 13 Dec 2012 8

IP−ROUTE(8) Linux IP−ROUTE(8)

the first segment of the new SRH. The source address is set
as described in ip-sr(8).

expires TIME (Linux 4.4+ only)

the route will be deleted after the expires time. Only support IPv6 at present.

ttl-propagate { enabled | disabled }
Control whether TTL should be propagated from any encap into the un-encapsulated
packet, overriding any global configuration. Only supported for MPLS at present.

ip route delete
delete route
ip route del has the same arguments as ip route add, but their semantics are a bit different.

Ke y values (to, tos, preference and table) select the route to delete. If optional attributes are
present, ip verifies that they coincide with the attributes of the route to delete. If no route with the
given key and attributes was found, ip route del fails.

ip route show
list routes
the command displays the contents of the routing tables or the route(s) selected by some criteria.

to SELECTOR (default)

only select routes from the given range of destinations. SELECTOR consists of an op-
tional modifier (root, match or exact) and a prefix. root PREFIX selects routes with pre-
fixes not shorter than PREFIX . F.e. root 0/0 selects the entire routing table. match

PREFIX selects routes with prefixes not longer than PREFIX . F.e. match 10.0/16 se-
lects 10.0/16, 10/8 and 0/0, but it does not select 10.1/16 and 10.0.0/24. And exact PRE-

FIX (or just PREFIX) selects routes with this exact prefix. If neither of these options are
present, ip assumes root 0/0 i.e. it lists the entire table.

tos TOS

dsfield TOS

only select routes with the given TOS.

table TABLEID

show the routes from this table(s). The default setting is to show table main. TABLEID

may either be the ID of a real table or one of the special values:

all - list all of the tables.

cache - dump the routing cache.

vrf NAME

show the routes for the table associated with the vrf name

cloned

cached list cloned routes i.e. routes which were dynamically forked from other routes because
some route attribute (f.e. MTU) was updated. Actually, it is equivalent to table cache.

iproute2 13 Dec 2012 9

IP−ROUTE(8) Linux IP−ROUTE(8)

from SELECTOR

the same syntax as for to, but it binds the source address range rather than destinations.
Note that the from option only works with cloned routes.

protocol RTPROT O

only list routes of this protocol.

scope SCOPE_VAL

only list routes with this scope.

type TYPE

only list routes of this type.

dev NAME

only list routes going via this device.

via [FAMILY] PREFIX

only list routes going via the nexthop routers selected by PREFIX .

src PREFIX

only list routes with preferred source addresses selected by PREFIX .

realm REALMID

realms FROMREALM/TOREALM

only list routes with these realms.

ip route flush
flush routing tables
this command flushes routes selected by some criteria.

The arguments have the same syntax and semantics as the arguments of ip route show, but routing
tables are not listed but purged. The only difference is the default action: show dumps all the IP
main routing table but flush prints the helper page.

With the -statistics option, the command becomes verbose. It prints out the number of deleted
routes and the number of rounds made to flush the routing table. If the option is given twice, ip

route flush also dumps all the deleted routes in the format described in the previous subsection.

ip route get
get a single route
this command gets a single route to a destination and prints its contents exactly as the kernel sees
it.

fibmatch

Return full fib lookup matched route. Default is to return the resolved dst entry

iproute2 13 Dec 2012 10

IP−ROUTE(8) Linux IP−ROUTE(8)

to ADDRESS (default)

the destination address.

from ADDRESS

the source address.

tos TOS

dsfield TOS

the Type Of Service.

iif NAME

the device from which this packet is expected to arrive.

oif NAME

force the output device on which this packet will be routed.

mark MARK

the firewall mark (fwmark)

vrf NAME

force the vrf device on which this packet will be routed.

ipproto PROT OCOL

ip protocol as seen by the route lookup

sport NUMBER

source port as seen by the route lookup

dport NUMBER

destination port as seen by the route lookup

connected

if no source address (option from) was given, relookup the route with the source set to
the preferred address received from the first lookup. If policy routing is used, it may be a
different route.

Note that this operation is not equivalent to ip route show. show shows existing routes. get re-
solves them and creates new clones if necessary. Essentially, get is equivalent to sending a packet
along this path. If the iif argument is not given, the kernel creates a route to output packets to-
wards the requested destination. This is equivalent to pinging the destination with a subsequent ip

route ls cache, howev er, no packets are actually sent. With the iif argument, the kernel pretends
that a packet arrived from this interface and searches for a path to forward the packet.

ip route save
save routing table information to stdout
This command behaves like ip route show except that the output is raw data suitable for passing
to ip route restore.

iproute2 13 Dec 2012 11

IP−ROUTE(8) Linux IP−ROUTE(8)

ip route restore
restore routing table information from stdin
This command expects to read a data stream as returned from ip route save. It will attempt to re-
store the routing table information exactly as it was at the time of the save, so any translation of in-
formation in the stream (such as device indexes) must be done first. Any existing routes are left
unchanged. Any routes specified in the data stream that already exist in the table will be ignored.

NOTES
Starting with Linux kernel version 3.6, there is no routing cache for IPv4 anymore. Hence ip route show

cached will never print any entries on systems with this or newer kernel versions.

EXAMPLES
ip ro

Show all route entries in the kernel.

ip route add default via 192.168.1.1 dev eth0
Adds a default route (for all addresses) via the local gateway 192.168.1.1 that can be reached on de-
vice eth0.

ip route add 10.1.1.0/30 encap mpls 200/300 via 10.1.1.1 dev eth0
Adds an ipv4 route with mpls encapsulation attributes attached to it.

ip -6 route add 2001:db8:1::/64 encap seg6 mode encap segs 2001:db8:42::1,2001:db8:ffff::2 dev eth0
Adds an IPv6 route with SRv6 encapsulation and two segments attached.

ip route add 10.1.1.0/30 nhid 10
Adds an ipv4 route using nexthop object with id 10.

SEE ALSO
ip(8)

AUTHOR
Original Manpage by Michail Litvak <mci@owl.openwall.com>

iproute2 13 Dec 2012 12

