
INIT−D−SCRIPT (5) BSD File Formats Manual INIT−D−SCRIPT (5)

NAME

init−d−script — interpreter for short and simple init.d scripts

DESCRIPTION

Generic init.d script framework to reduce the redundant code in /etc/init.d/. The goal is to create an

init.d script that is Debian and LSB compliant. When the Debian policy conflicts with the LSB, the Debian

policy takes precedence.

This is a simple example on how init−d−script can be used to start and stop a daemon with PID file support:

#!/usr/bin/env /lib/init/init−d−script

BEGIN INIT INFO

Provides: atd

Required−Start: $syslog $time $remote_fs

Required−Stop: $syslog $time $remote_fs

Default−Start: 2 3 4 5

Default−Stop: 0 1 6

Short−Description: run at jobs

Description: Debian init script to start the daemon

running at jobs.

END INIT INFO

DAEMON=/usr/sbin/atd

The following variables affect behaviour of an init script:

DAEMON Path to daemon being started. If the init script is not supposed to start any kind of daemon,

the functions do_start_override(), do_stop_override() and

do_status_override() should be defined instead.

DAEMON_ARGS Additional arguments, passed to daemon during start.

NAME Additional environment variables are sources from /etc/default/${NAME}. If unset,

this variable defaults to the basename of the “DAEMON” value.

COMMAND_NAME

If this variable is set, it is used as argument to the −−name option of

start−stop−daemon(8). It may be useful if the value of the NAME variable is too long.

PIDFILE Path to file where the process identifier of the started daemon will be stored during start. If

the value is verbatim “none”, the process identifier will not be stored in any file. If this

variable is not set, it gets a sensible default value, so it is rarely necessary to set this vari-

able explicitly.

Additionally, it is possible to change the behaviour of the resulting shell script by overriding some of the in-

ternal functions. To do so, define function with an _override suffix. So, for example, to override the

do_status() function, one should define a do_status_override() function. The exception to this

rule is the do_reload() function, whose override should be defined as-is, without the above-mentioned suf-

fix.

Here is a control flow chart that explains what functions are called and when:

/etc/init.d/script start

do_start

do_start_prepare # no-op

do_start_cmd # start−stop−daemon is called here

do_start_cleanup # no-op

Debian August 5, 2019 1

INIT−D−SCRIPT (5) BSD File Formats Manual INIT−D−SCRIPT (5)

/etc/init.d/script stop

do_stop

do_stop_prepare # no-op

do_stop_cmd # start−stop−daemon is called here

do_stop_cleanup # no-op

/etc/init.d/script status

do_status

/etc/init.d/script reload

do_reload

do_usage

exit 3

/etc/init.d/script force−reload

do_force_reload

do_reload # if overridden

do_restart

do_restart_prepare

do_stop_cmd

do_start_cmd

do_restart_cleanup

/etc/init.d/script restart

do_force_restart

/etc/init.d/script try−restart

if do_status; then

do_restart

do_restart_prepare

do_stop_cmd # start−stop−daemon is called here

do_start_cmd # start−stop−daemon is called here

do_restart_cleanup

/etc/init.d/script <arg>

do_unknown <arg>

exit 3

/etc/init.d/script

do_usage

As can be seen, by default, the script does not support the reload action; it should be implemented by the

script writer by defining a do_reload() function.

If the daemon performs reload action upon receiving a SIGUSR1 signal, a generic implementation can be

used with the following code:

alias do_reload=do_reload_sigusr1

SEE ALSO

inittab(8), service(8), update−rc.d(8).

Debian August 5, 2019 2

INIT−D−SCRIPT (5) BSD File Formats Manual INIT−D−SCRIPT (5)

AUTHORS

Petter Reinholdtsen <pere@debian.org>

Debian August 5, 2019 3

