
HISTORY(3) Library Functions Manual HISTORY(3)

NAME
history − GNU History Library

COPYRIGHT
The GNU History Library is Copyright © 1989-2017 by the Free Software Foundation, Inc.

DESCRIPTION
Many programs read input from the user a line at a time. The GNU History library is able to keep track of

those lines, associate arbitrary data with each line, and utilize information from previous lines in composing

new ones.

HISTORY EXPANSION
The history library supports a history expansion feature that is identical to the history expansion in bash.
This section describes what syntax features are available.

History expansions introduce words from the history list into the input stream, making it easy to repeat

commands, insert the arguments to a previous command into the current input line, or fix errors in previous

commands quickly.

History expansion is usually performed immediately after a complete line is read. It takes place in two

parts. The first is to determine which line from the history list to use during substitution. The second is to

select portions of that line for inclusion into the current one. The line selected from the history is the event,

and the portions of that line that are acted upon are words. Various modifiers are available to manipulate

the selected words. The line is broken into words in the same fashion as bash does when reading input, so

that several words that would otherwise be separated are considered one word when surrounded by quotes

(see the description of history_tokenize() below). History expansions are introduced by the appearance of

the history expansion character, which is ! by default. Only backslash (\) and single quotes can quote the

history expansion character.

Event Designators
An event designator is a reference to a command line entry in the history list. Unless the reference is abso-

lute, events are relative to the current position in the history list.

! Start a history substitution, except when followed by a blank, newline, = or (.

!n Refer to command line n.

!−n Refer to the current command minus n.

!! Refer to the previous command. This is a synonym for ‘!−1’.

!string Refer to the most recent command preceding the current position in the history list starting with

string.

!?string[?]
Refer to the most recent command preceding the current position in the history list containing

string. The trailing ? may be omitted if string is followed immediately by a newline.

ˆstring1ˆstring2ˆ
Quick substitution. Repeat the last command, replacing string1 with string2. Equivalent to

‘‘!!:s/string1/string2/’’ (see Modifiers below).

!# The entire command line typed so far.

Word Designators
Word designators are used to select desired words from the event. A : separates the event specification

from the word designator. It may be omitted if the word designator begins with a ˆ, $, *, −, or %. Words

are numbered from the beginning of the line, with the first word being denoted by 0 (zero). Words are in-

serted into the current line separated by single spaces.

0 (zero)
The zeroth word. For the shell, this is the command word.

n The nth word.

ˆ The first argument. That is, word 1.

$ The last word. This is usually the last argument, but will expand to the zeroth word if there is only

one word in the line.

GNU History 6.3 2017 October 8 1

HISTORY(3) Library Functions Manual HISTORY(3)

% The word matched by the most recent ‘?string?’ search.

x−y A range of words; ‘−y’ abbreviates ‘0−y’.

* All of the words but the zeroth. This is a synonym for ‘1−$’. It is not an error to use * if there is

just one word in the event; the empty string is returned in that case.

x* Abbreviates x−$.

x− Abbreviates x−$ like x*, but omits the last word.

If a word designator is supplied without an event specification, the previous command is used as the event.

Modifiers
After the optional word designator, there may appear a sequence of one or more of the following modifiers,

each preceded by a ‘:’.

h Remove a trailing file name component, leaving only the head.

t Remove all leading file name components, leaving the tail.

r Remove a trailing suffix of the form .xxx, leaving the basename.

e Remove all but the trailing suffix.

p Print the new command but do not execute it.

q Quote the substituted words, escaping further substitutions.

x Quote the substituted words as with q, but break into words at blanks and newlines.

s/old/new/
Substitute new for the first occurrence of old in the event line. Any delimiter can be used in place

of /. The final delimiter is optional if it is the last character of the event line. The delimiter may

be quoted in old and new with a single backslash. If & appears in new, it is replaced by old . A

single backslash will quote the &. If old is null, it is set to the last old substituted, or, if no previ-

ous history substitutions took place, the last string in a !?string[?] search.

& Repeat the previous substitution.

g Cause changes to be applied over the entire event line. This is used in conjunction with ‘:s’ (e.g.,

‘:gs/old/new/’) or ‘:&’. If used with ‘:s’, any delimiter can be used in place of /, and the final de-

limiter is optional if it is the last character of the event line. An a may be used as a synonym for g.

G Apply the following ‘s’ modifier once to each word in the event line.

PROGRAMMING WITH HISTORY FUNCTIONS
This section describes how to use the History library in other programs.

Introduction to History
The programmer using the History library has available functions for remembering lines on a history list,

associating arbitrary data with a line, removing lines from the list, searching through the list for a line con-

taining an arbitrary text string, and referencing any line in the list directly. In addition, a history expansion

function is available which provides for a consistent user interface across different programs.

The user using programs written with the History library has the benefit of a consistent user interface with a

set of well-known commands for manipulating the text of previous lines and using that text in new com-

mands. The basic history manipulation commands are identical to the history substitution provided by

bash.

If the programmer desires, he can use the Readline library, which includes some history manipulation by

default, and has the added advantage of command line editing.

Before declaring any functions using any functionality the History library provides in other code, an appli-

cation writer should include the file <readline/history.h> in any file that uses the History library’s features.

It supplies extern declarations for all of the library’s public functions and variables, and declares all of the

public data structures.

History Storage
The history list is an array of history entries. A history entry is declared as follows:

typedef void * histdata_t;

typedef struct _hist_entry {

GNU History 6.3 2017 October 8 2

HISTORY(3) Library Functions Manual HISTORY(3)

char *line;

char *timestamp;

histdata_t data;

} HIST_ENTRY;

The history list itself might therefore be declared as

HIST_ENTRY ** the_history_list;

The state of the History library is encapsulated into a single structure:

/*

* A structure used to pass around the current state of the history.

*/

typedef struct _hist_state {

HIST_ENTRY **entries; /* Pointer to the entries themselves. */

int offset; /* The location pointer within this array. */

int length; /* Number of elements within this array. */

int size; /* Number of slots allocated to this array. */

int flags;

} HISTORY_STATE;

If the flags member includes HS_STIFLED, the history has been stifled.

History Functions
This section describes the calling sequence for the various functions exported by the GNU History library.

Initializing History and State Management
This section describes functions used to initialize and manage the state of the History library when you

want to use the history functions in your program.

void using_history (void)

Begin a session in which the history functions might be used. This initializes the interactive variables.

HISTORY_STATE * history_get_history_state (void)

Return a structure describing the current state of the input history.

void history_set_history_state (HISTORY_STATE *state)

Set the state of the history list according to state.

History List Management
These functions manage individual entries on the history list, or set parameters managing the list itself.

void add_history (const char *string)

Place string at the end of the history list. The associated data field (if any) is set to NULL. If the maxi-

mum number of history entries has been set using stifle_history(), and the new number of history entries

would exceed that maximum, the oldest history entry is removed.

void add_history_time (const char *string)

Change the time stamp associated with the most recent history entry to string.

HIST_ENTRY * remove_history (int which)

Remove history entry at offset which from the history. The removed element is returned so you can free the

line, data, and containing structure.

histdata_t free_history_entry (HIST_ENTRY *histent)

Free the history entry histent and any history library private data associated with it. Returns the applica-

tion-specific data so the caller can dispose of it.

GNU History 6.3 2017 October 8 3

HISTORY(3) Library Functions Manual HISTORY(3)

HIST_ENTRY * replace_history_entry (int which, const char *line, histdata_t data)

Make the history entry at offset which have line and data. This returns the old entry so the caller can dis-

pose of any application-specific data. In the case of an invalid which, a NULL pointer is returned.

void clear_history (void)

Clear the history list by deleting all the entries.

void stifle_history (int max)

Stifle the history list, remembering only the last max entries. The history list will contain only max entries

at a time.

int unstifle_history (void)

Stop stifling the history. This returns the previously-set maximum number of history entries (as set by sti-
fle_history()). history was stifled. The value is positive if the history was stifled, negative if it wasn’t.

int history_is_stifled (void)

Returns non-zero if the history is stifled, zero if it is not.

Information About the History List
These functions return information about the entire history list or individual list entries.

HIST_ENTRY ** history_list (void)

Return a NULL terminated array of HIST_ENTRY * which is the current input history. Element 0 of this

list is the beginning of time. If there is no history, return NULL.

int where_history (void)

Returns the offset of the current history element.

HIST_ENTRY * current_history (void)

Return the history entry at the current position, as determined by where_history(). If there is no entry

there, return a NULL pointer.

HIST_ENTRY * history_get (int offset)

Return the history entry at position offset. The range of valid values of offset starts at history_base and

ends at history_length − 1. If there is no entry there, or if offset is outside the valid range, return a NULL
pointer.

time_t history_get_time (HIST_ENTRY *)

Return the time stamp associated with the history entry passed as the argument.

int history_total_bytes (void)

Return the number of bytes that the primary history entries are using. This function returns the sum of the

lengths of all the lines in the history.

Moving Around the History List
These functions allow the current index into the history list to be set or changed.

int history_set_pos (int pos)

Set the current history offset to pos, an absolute index into the list. Returns 1 on success, 0 if pos is less

than zero or greater than the number of history entries.

HIST_ENTRY * previous_history (void)

Back up the current history offset to the previous history entry, and return a pointer to that entry. If there is

no previous entry, return a NULL pointer.

GNU History 6.3 2017 October 8 4

HISTORY(3) Library Functions Manual HISTORY(3)

HIST_ENTRY * next_history (void)

If the current history offset refers to a valid history entry, increment the current history offset. If the possi-

bly-incremented history offset refers to a valid history entry, return a pointer to that entry; otherwise, return

a NULL pointer.

Searching the History List
These functions allow searching of the history list for entries containing a specific string. Searching may be

performed both forward and backward from the current history position. The search may be anchored,

meaning that the string must match at the beginning of the history entry.

int history_search (const char *string, int direction)

Search the history for string, starting at the current history offset. If direction is less than 0, then the search

is through previous entries, otherwise through subsequent entries. If string is found, then the current his-

tory index is set to that history entry, and the value returned is the offset in the line of the entry where string

was found. Otherwise, nothing is changed, and a -1 is returned.

int history_search_prefix (const char *string, int direction)

Search the history for string, starting at the current history offset. The search is anchored: matching lines

must begin with string. If direction is less than 0, then the search is through previous entries, otherwise

through subsequent entries. If string is found, then the current history index is set to that entry, and the re-

turn value is 0. Otherwise, nothing is changed, and a -1 is returned.

int history_search_pos (const char *string, int direction, int pos)

Search for string in the history list, starting at pos, an absolute index into the list. If direction is negative,

the search proceeds backward from pos, otherwise forward. Returns the absolute index of the history ele-

ment where string was found, or -1 otherwise.

Managing the History File
The History library can read the history from and write it to a file. This section documents the functions for

managing a history file.

int read_history (const char *filename)

Add the contents of filename to the history list, a line at a time. If filename is NULL, then read from ˜/.his-

tory. Returns 0 if successful, or errno if not.

int read_history_range (const char *filename, int from, int to)

Read a range of lines from filename, adding them to the history list. Start reading at line from and end at to.

If from is zero, start at the beginning. If to is less than from, then read until the end of the file. If filename

is NULL, then read from ˜/.history. Returns 0 if successful, or errno if not.

int write_history (const char *filename)

Write the current history to filename, overwriting filename if necessary. If filename is NULL, then write

the history list to ˜/.history. Returns 0 on success, or errno on a read or write error.

int append_history (int nelements, const char *filename)

Append the last nelements of the history list to filename. If filename is NULL, then append to ˜/.history.

Returns 0 on success, or errno on a read or write error.

int history_truncate_file (const char *filename, int nlines)

Truncate the history file filename, leaving only the last nlines lines. If filename is NULL, then ˜/.history is

truncated. Returns 0 on success, or errno on failure.

GNU History 6.3 2017 October 8 5

HISTORY(3) Library Functions Manual HISTORY(3)

History Expansion
These functions implement history expansion.

int history_expand (char *string, char **output)

Expand string, placing the result into output, a pointer to a string. Returns:

0 If no expansions took place (or, if the only change in the text was the removal of escape

characters preceding the history expansion character);

1 if expansions did take place;

-1 if there was an error in expansion;

2 if the returned line should be displayed, but not executed, as with the :p modifier.

If an error ocurred in expansion, then output contains a descriptive error message.

char * get_history_event (const char *string, int *cindex, int qchar)

Returns the text of the history event beginning at string + *cindex. *cindex is modified to point to after the

ev ent specifier. At function entry, cindex points to the index into string where the history event specifica-

tion begins. qchar is a character that is allowed to end the event specification in addition to the ‘‘normal’’

terminating characters.

char ** history_tokenize (const char *string)

Return an array of tokens parsed out of string, much as the shell might. The tokens are split on the charac-

ters in the history_word_delimiters variable, and shell quoting conventions are obeyed.

char * history_arg_extract (int first, int last, const char *string)

Extract a string segment consisting of the first through last arguments present in string. Arguments are split

using history_tokenize().

History Variables
This section describes the externally-visible variables exported by the GNU History Library.

int history_base
The logical offset of the first entry in the history list.

int history_length
The number of entries currently stored in the history list.

int history_max_entries
The maximum number of history entries. This must be changed using stifle_history().

int history_wite_timestamps
If non-zero, timestamps are written to the history file, so they can be preserved between sessions. The de-

fault value is 0, meaning that timestamps are not saved. The current timestamp format uses the value of

history_comment_char to delimit timestamp entries in the history file. If that variable does not have a value

(the default), timestamps will not be written.

char history_expansion_char
The character that introduces a history event. The default is !. Setting this to 0 inhibits history expansion.

char history_subst_char
The character that invokes word substitution if found at the start of a line. The default is ˆ.

char history_comment_char
During tokenization, if this character is seen as the first character of a word, then it and all subsequent char-

acters up to a newline are ignored, suppressing history expansion for the remainder of the line. This is dis-

abled by default.

GNU History 6.3 2017 October 8 6

HISTORY(3) Library Functions Manual HISTORY(3)

char * history_word_delimiters
The characters that separate tokens for history_tokenize(). The default value is " \t\n()<>;&|".

char * history_no_expand_chars
The list of characters which inhibit history expansion if found immediately following history_expan-
sion_char. The default is space, tab, newline, \r, and =.

char * history_search_delimiter_chars
The list of additional characters which can delimit a history search string, in addition to space, tab, : and ?

in the case of a substring search. The default is empty.

int history_quotes_inhibit_expansion
If non-zero, double-quoted words are not scanned for the history expansion character or the history com-

ment character. The default value is 0.

rl_linebuf_func_t * history_inhibit_expansion_function
This should be set to the address of a function that takes two arguments: a char * (string) and an int index

into that string (i). It should return a non-zero value if the history expansion starting at string[i] should not

be performed; zero if the expansion should be done. It is intended for use by applications like bash that use

the history expansion character for additional purposes. By default, this variable is set to NULL.

FILES
˜/.history

Default filename for reading and writing saved history

SEE ALSO
The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

bash(1)

readline(3)

AUTHORS
Brian Fox, Free Software Foundation

bfox@gnu.org

Chet Ramey, Case Western Reserve University

chet.ramey@case.edu

BUG REPORTS
If you find a bug in the history library, you should report it. But first, you should make sure that it really is

a bug, and that it appears in the latest version of the history library that you have.

Once you have determined that a bug actually exists, mail a bug report to bug−readline@gnu.org. If you

have a fix, you are welcome to mail that as well! Suggestions and ‘philosophical’ bug reports may be

mailed to bug-readline@gnu.org or posted to the Usenet newsgroup gnu.bash.bug.

Comments and bug reports concerning this manual page should be directed to chet.ramey@case.edu.

GNU History 6.3 2017 October 8 7

