GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

NAME

groff_out — groff intermediate output format

DESCRIPTION
This manual page describes the intermediate output format of the GNU roff(7) text processing system
groff(1). This output is produced by a run of the GNU troff(1) program. It contains already all device-spe-
cific information, but it is not yet fed into a device postprocessor program.

As the GNU roff processor groff(1) is a wrapper program around troff that automatically calls a postpro-
cessor, this output does not show up normally. This is why it is called intermediate within the groff system.
The groff program provides the option —Z to inhibit postprocessing, such that the produced intermediate
output is sent to standard output just like calling troff manually.

In this document, the term troff output describes what is output by the GNU troff program, while interme-
diate output refers to the language that is accepted by the parser that prepares this output for the postpro-
cessors. This parser is smarter on whitespace and implements obsolete elements for compatibility, other-
wise both formats are the same. Both formats can be viewed directly with gxditview(1).

The main purpose of the intermediate output concept is to facilitate the development of postprocessors by
providing a common programming interface for all devices. It has a language of its own that is completely
different from the groff(7) language. While the groff language is a high-level programming language for
text processing, the intermediate output language is a kind of low-level assembler language by specifying
all positions on the page for writing and drawing.

The pre-groff roff versions are denoted as classical troff. The intermediate output produced by groff is
fairly readable, while classical troff output was hard to understand because of strange habits that are still
supported, but not used any longer by GNU troff .

LANGUAGE CONCEPTS
During the run of troff, the roff input is cracked down to the information on what has to be printed at what
position on the intended device. So the language of the intermediate output format can be quite small. Its
only elements are commands with or without arguments. In this document, the term “command” always
refers to the intermediate output language, never to the roff language used for document formatting. There
are commands for positioning and text writing, for drawing, and for device controlling.

Separation
Classical troff output had strange requirements on whitespace. The groff output parser, however, is smart
about whitespace by making it maximally optional. The whitespace characters, i.e., the tab, space, and
newline characters, always have a syntactical meaning. They are never printable because spacing within
the output is always done by positioning commands.

Any sequence of space or tab characters is treated as a single syntactical space. It separates commands
and arguments, but is only required when there would occur a clashing between the command code and the
arguments without the space. Most often, this happens when variable length command names, arguments,
argument lists, or command clusters meet. Commands and arguments with a known, fixed length need not
be separated by syntactical space.

A line break is a syntactical element, too. Every command argument can be followed by whitespace, a
comment, or a newline character. Thus a syntactical line break is defined to consist of optional syntactical
space that is optionally followed by a comment, and a newline character.

The normal commands, those for positioning and text, consist of a single letter taking a fixed number of ar-
guments. For historical reasons, the parser allows stacking of such commands on the same line, but fortu-
nately, in groff intermediate output, every command with at least one argument is followed by a line break,
thus providing excellent readability.

The other commands — those for drawing and device controlling — have a more complicated structure;
some recognize long command names, and some take a variable number of arguments. So all D and x com-
mands were designed to request a syntactical line break after their last argument. Only one command,
‘x X’ has an argument that can stretch over several lines, all other commands must have all of their argu-
ments on the same line as the command, i.e., the arguments may not be split by a line break.

groff 1.22.4 21 March 2020 1

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

Empty lines, i.e., lines containing only space and/or a comment, can occur everywhere. They are just ig-
nored.

Argument Units

Some commands take integer arguments that are assumed to represent values in a measurement unit, but the
letter for the corresponding scale indicator is not written with the output command arguments; see groff(7)
and Groff: The GNU Implementation of troff, the groff Texinfo manual, for more on this topic. Most com-
mands assume the scale indicator u, the basic unit of the device, some use z, the scaled point unit of the de-
vice, while others, such as the color commands expect plain integers. Note that these scale indicators are
relative to the chosen device. They are defined by the parameters specified in the device’s DESC file; see
groff_font(5).

Note that single characters can have the eighth bit set, as can the names of fonts and special characters (this
is, glyphs). The names of glyphs and fonts can be of arbitrary length. A glyph that is to be printed will al-
ways be in the current font.

A string argument is always terminated by the next whitespace character (space, tab, or newline); an em-
bedded # character is regarded as part of the argument, not as the beginning of a comment command. An
integer argument is already terminated by the next non-digit character, which then is regarded as the first
character of the next argument or command.

Document Parts
A correct intermediate output document consists of two parts, the prologue and the body.

The task of the prologue is to set the general device parameters using three exactly specified commands.
The groff prologue is guaranteed to consist of the following three lines (in that order):

x T device

xresnhv

X init
with the arguments set as outlined in subsection “Device Control Commands” below. However, the parser
for the intermediate output format is able to swallow additional whitespace and comments as well.

The body is the main section for processing the document data. Syntactically, it is a sequence of any com-
mands different from the ones used in the prologue. Processing is terminated as soon as the first x stop
command is encountered; the last line of any groff intermediate output always contains such a command.

Semantically, the body is page oriented. A new page is started by a p command. Positioning, writing, and
drawing commands are always done within the current page, so they cannot occur before the first p com-
mand. Absolute positioning (by the H and V commands) is done relative to the current page, all other posi-
tioning is done relative to the current location within this page.

COMMAND REFERENCE

This section describes all intermediate output commands, the classical commands as well as the groff ex-
tensions.

Comment Command
#anythingénd-of-line[]
A comment. Ignore any characters from the # character up to the next newline character.

This command is the only possibility for commenting in the intermediate output. Each comment can be
preceded by arbitrary syntactical space; every command can be terminated by a comment.

Simple Commands

The commands in this subsection have a command code consisting of a single character, taking a fixed
number of arguments. Most of them are commands for positioning and text writing. These commands are
smart about whitespace. Optionally, syntactical space can be inserted before, after, and between the com-
mand letter and its arguments. All of these commands are stackable, i.e., they can be preceded by other
simple commands or followed by arbitrary other commands on the same line. A separating syntactical
space is only necessary when two integer arguments would clash or if the preceding argument ends with a
string argument.

groff 1.22.4 21 March 2020 2

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

C xxx[White-spacel]
Print a glyph (special character) named xxx. The trailing syntactical space or line break is neces-
sary to allow glyph names of arbitrary length. The glyph is printed at the current print position;
the glyph’s size is read from the font file. The print position is not changed.

cc Print glyph with single-letter name c at the current print position; the glyph’s size is read from the
font file. The print position is not changed.

fn Set font to font number n (a non-negative integer).

Hn Move right to the absolute vertical position n (a non-negative integer in basic units u) relative to
left edge of current page.

hn Move n (a non-negative integer) basic units u horizontally to the right. [CSTR #54] allows nega-
tive values for n also, but groff doesn’t use this.

m color-scheme [component . . .]
Set the color for text (glyphs), line drawing, and the outline of graphic objects using different color
schemes; the analogous command for the filling color of graphic objects is DF. The color compo-
nents are specified as integer arguments between 0 and 65536. The number of color components
and their meaning vary for the different color schemes. These commands are generated by the
groff escape sequence \m. No position changing. These commands are a groff extension.

mc cyan magenta yellow
Set color using the CMY color scheme, having the 3 color components cyan, magenta,

and yellow.

md Set color to the default color value (black in most cases). No component arguments.

mg gray
Set color to the shade of gray given by the argument, an integer between O (black) and
65536 (white).

mk cyan magenta yellow black
Set color using the CMYK color scheme, having the 4 color components cyan, magenta,
yellow, and black.

mr red green blue
Set color using the RGB color scheme, having the 3 color components red, green, and
blue.

Nn Print glyph with index n (an integer, normally non-negative) of the current font. The print position
is not changed. If —T html or —T xhtml is used, negative values are emitted also to indicate an
unbreakable space with given width. For example, N —193 represents an unbreakable space which
has a width of 193 u. This command is a groff extension.

nba Inform the device about a line break, but no positioning is done by this command. In classical
troff , the integer arguments b and a informed about the space before and after the current line to
make the intermediate output more human readable without performing any action. In groff, they
are just ignored, but they must be provided for compatibility reasons.

pn Begin a new page in the outprint. The page number is set to n. This page is completely indepen-
dent of pages formerly processed even if those have the same page number. The vertical position
on the outprint is automatically set to 0. All positioning, writing, and drawing is always done rela-
tive to a page, so a p command must be issued before any of these commands.

sn Set point size to n scaled points (this is unit z in GNU troff). Classical troff used the unit points
(p) instead; see section “Compatibility” below.

t xyz...OWhite-spacel]

t xyz... dummy-arg[White-spacel]
Print a word, i.e., a sequence of glyphs with single-letter names x, y, z, etc., terminated by a space
character or a line break; an optional second integer argument is ignored (this allows the formatter

groff 1.22.4 21 March 2020 3

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

to generate an even number of arguments). The first glyph should be printed at the current posi-
tion, the current horizontal position should then be increased by the width of the first glyph, and so
on for each glyph. The widths of the glyph are read from the font file, scaled for the current point
size, and rounded to a multiple of the horizontal resolution. Special characters (glyphs with names
longer than a single letter) cannot be printed using this command; use the C command for those
glyphs. This command is a groff extension; it is only used for devices whose DESC file contains
the tcommand keyword; see groff_font(5).

u n xyz...[White-spacel]
Print word with track kerning. This is the same as the t command except that after printing each
glyph, the current horizontal position is increased by the sum of the width of that glyph and » (an
integer in basic units u). This command is a groff extension; it is only used for devices whose
DESC file contains the tcommand keyword; see groff_font(5).

Vn Move down to the absolute vertical position n (a non-negative integer in basic units u) relative to
upper edge of current page.

vn Move n basic units u down (n is a non-negative integer). [CSTR #54] allows negative values for n
also, but groff doesn’t use this.

w Informs about a paddable whitespace to increase readability. The spacing itself must be performed
explicitly by a move command.

Graphics Commands
Each graphics or drawing command in the intermediate output starts with the letter D followed by one or
two characters that specify a subcommand; this is followed by a fixed or variable number of integer argu-
ments that are separated by a single space character. A D command may not be followed by another com-
mand on the same line (apart from a comment), so each D command is terminated by a syntactical line
break.

troff output follows the classical spacing rules (no space between command and subcommand, all argu-
ments are preceded by a single space character), but the parser allows optional space between the command
letters and makes the space before the first argument optional. As usual, each space can be any sequence of
tab and space characters.

Some graphics commands can take a variable number of arguments. In this case, they are integers repre-
senting a size measured in basic units u. The & arguments stand for horizontal distances where positive
means right, negative left. The v arguments stand for vertical distances where positive means down, nega-
tive up. All these distances are offsets relative to the current location.

Unless indicated otherwise, each graphics command directly corresponds to a similar groff \D escape se-
quence; see groff(7).

Unknown D commands are assumed to be device-specific. Its arguments are parsed as strings; the whole
information is then sent to the postprocessor.

In the following command reference, the syntax element [line-breakUimeans a syntactical line break as de-
fined in subsection “Separation” above.

D~ h] v, h2 Ve h v [ine-breakl]
n n
Draw B-spline from current position to offset (hl, vl), then to offset (hz, vz) if given, etc., up to
(h ,v). This command takes a variable number of argument pairs; the current position is moved
n n

to the terminal point of the drawn curve.

Da h] v, h2 v, ine-break[]
Draw arc from current position to (hz’ v]) + (h2, v2) with center at (hl, vj); then move the current

position to the final point of the arc.
DC d Uine-break[]

groff 1.22.4 21 March 2020 4

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

DC d dummy-arg Uine-break[]
Draw a solid circle using the current fill color with diameter d (integer in basic units u) with left-
most point at the current position; then move the current position to the rightmost point of the cir-
cle. An optional second integer argument is ignored (this allows the formatter to generate an even
number of arguments). This command is a groff extension.

Dc d Hine-break]
Draw circle line with diameter d (integer in basic units u) with leftmost point at the current posi-
tion; then move the current position to the rightmost point of the circle.

DE £ v Hine-break[]
Draw a solid ellipse in the current fill color with a horizontal diameter of /4 and a vertical diameter
of v (both integers in basic units u) with the leftmost point at the current position; then move to the
rightmost point of the ellipse. This command is a groff extension.

De /v Uine-break[]
Draw an outlined ellipse with a horizontal diameter of / and a vertical diameter of v (both integers
in basic units u) with the leftmost point at current position; then move to the rightmost point of the
ellipse.

DF color-scheme [component . . .] dine-break]
Set fill color for solid drawing objects using different color schemes; the analogous command for
setting the color of text, line graphics, and the outline of graphic objects is m. The color compo-
nents are specified as integer arguments between 0 and 65536. The number of color components
and their meaning vary for the different color schemes. These commands are generated by the
groff escape sequences \D’F ...” and \M (with no other corresponding graphics commands). No
position changing. This command is a groff extension.

DFc cyan magenta yellow Uine-break[]
Set fill color for solid drawing objects using the CMY color scheme, having the 3 color
components cyan, magenta, and yellow.

DFd [ine-break[]
Set fill color for solid drawing objects to the default fill color value (black in most cases).
No component arguments.

DFg gray (ine-break[]
Set fill color for solid drawing objects to the shade of gray given by the argument, an inte-
ger between 0 (black) and 65536 (white).

DFk cyan magenta yellow black Uine-break[]
Set fill color for solid drawing objects using the CMYK color scheme, having the 4 color
components cyan, magenta, yellow, and black.

DFr red green blue (ine-break[]
Set fill color for solid drawing objects using the RGB color scheme, having the 3 color
components red, green, and blue.

Df n [ine-break
The argument n must be an integer in the range —32767 to 32767.

0<n<1000
Set the color for filling solid drawing objects to a shade of gray, where 0 corresponds to
solid white, 1000 (the default) to solid black, and values in between to intermediate
shades of gray; this is obsoleted by command DFg.

n<0orn>1000
Set the filling color to the color that is currently being used for the text and the outline,
see command m. For example, the command sequence

mg 0 0 65536
Df -1

groff 1.22.4 21 March 2020 5

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

sets all colors to blue.
No position changing. This command is a groff extension.

DI 4 v (Tine-break[]
Draw line from current position to offset (4, v) (integers in basic units u); then set current position
to the end of the drawn line.

Dph v h v ...h v line-break[]
11 2 2 n o n

Draw a polygon line from current position to offset (hl, v]), from there to offset (hz, v2), etc., up to
offset (h , v), and from there back to the starting position. For historical reasons, the position is
n n

changed by adding the sum of all arguments with odd index to the actual horizontal position and
the even ones to the vertical position. Although this doesn’t make sense it is kept for compatibil-
ity. This command is a groff extension.

DP h/ v, h2 v, h’1 v Hine-break[]
The same macro as the corresponding Dp command with the same arguments, but draws a solid

polygon in the current fill color rather than an outlined polygon. The position is changed in the
same way as with Dp. This command is a groff extension.

Dt n [Tine-break]
Set the current line thickness to n (an integer in basic units u) if n > 0; if n=0 select the smallest
available line thickness; if n <0 set the line thickness proportional to the point size (this is the de-
fault before the first Dt command was specified). For historical reasons, the horizontal position is
changed by adding the argument to the actual horizontal position, while the vertical position is not
changed. Although this doesn’t make sense it is kept for compatibility. This command is a groff
extension.

Device Control Commands
Each device control command starts with the letter x followed by a space character (optional or arbitrary
space/tab in groff’) and a subcommand letter or word; each argument (if any) must be preceded by a syntac-
tical space. All x commands are terminated by a syntactical line break; no device control command can be
followed by another command on the same line (except a comment).

The subcommand is basically a single letter, but to increase readability, it can be written as a word, i.e., an
arbitrary sequence of characters terminated by the next tab, space, or newline character. All characters of
the subcommand word but the first are simply ignored. For example, troff outputs the initialization com-
mand xi as xinit and the resolution command xr as xres. But writings like xi_like_groff and
x roff_is_groff are accepted as well to mean the same commands.

In the following, the syntax element [ine-breakUmeans a syntactical line break as defined in subsection
“Separation” above.

xF name Uine-break[]
(Filename control command)
Use name as the intended name for the current file in error reports. This is useful for remembering
the original file name when groff uses an internal piping mechanism. The input file is not changed
by this command. This command is a groff extension.

xf n s [Tine-breakl]
(font control command)
Mount font position n (a non-negative integer) with font named s (a text word); see groff_font(5).

xH n ine-break]
(Height control command)
Set character height to n (a positive integer in scaled points z). Classical troff used the unit points
(p) instead; see section “Compatibility” below.

xi [ine-break[]
(init control command)
Initialize device. This is the third command of the prologue.

groff 1.22.4 21 March 2020 6

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

xp [ine-break[]
(pause control command)
Parsed but ignored. The classical documentation reads pause device, can be restarted.

xr n h v [ine-break[]
(resolution control command)
Resolution is n, while 4 is the minimal horizontal motion, and v the minimal vertical motion pos-
sible with this device; all arguments are positive integers in basic units u per inch. This is the sec-
ond command of the prologue.

xS n [ine-break[]
(Slant control command)
Set slant to n degrees (an integer in basic units u).

xs [ine-break[]
(stop control command)
Terminates the processing of the current file; issued as the last command of any intermediate troff
output.

xt [ine-break[]
(trailer control command)
Generate trailer information, if any. In groff, this is actually just ignored.

xT xxx ine-break]
(Typesetter control command)
Set name of device to word xxx, a sequence of characters ended by the next whitespace character.
The possible device names coincide with those from the groff —T option. This is the first com-
mand of the prologue.

xu 7 [ine-break[]
(underline control command)
Configure underlining of spaces. If n is 1, start underlining of spaces; if n is 0, stop underlining of
spaces. This is needed for the cu request in nroff mode and is ignored otherwise. This command
is a groff extension.

xX anything (ine-break[]

(X-escape control command)

Send string anything uninterpreted to the device. If the line following this command starts with a
+ character this line is interpreted as a continuation line in the following sense. The + is ignored,
but a newline character is sent instead to the device, the rest of the line is sent uninterpreted. The
same applies to all following lines until the first character of a line is not a + character. This com-
mand is generated by the groff escape sequence \X. The line-continuing feature is a groff exten-
sion.

Obsolete Command
In classical troff output, emitting a single glyph was mostly done by a very strange command that com-
bined a horizontal move and the printing of a glyph. It didn’t have a command code, but is represented by a
3-character argument consisting of exactly 2 digits and a character.

ddc Move right dd (exactly two decimal digits) basic units u, then print glyph with single-letter
name c.

In groff, arbitrary syntactical space around and within this command is allowed to be added.
Only when a preceding command on the same line ends with an argument of variable length a sep-
arating space is obligatory. In classical troff, large clusters of these and other commands were
used, mostly without spaces; this made such output almost unreadable.

For modern high-resolution devices, this command does not make sense because the width of the glyphs
can become much larger than two decimal digits. In groff, this is only used for the devices X75, X75-12,
X100, and X100-12. For other devices, the commands t and u provide a better functionality.

groff 1.22.4 21 March 2020 7

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

POSTPROCESSING
The roff postprocessors are programs that have the task to translate the intermediate output into actions that
are sent to a device. A device can be some piece of hardware such as a printer, or a software file format
suitable for graphical or text processing. The groff system provides powerful means that make the pro-
gramming of such postprocessors an easy task.

There is a library function that parses the intermediate output and sends the information obtained to the de-
vice via methods of a class with a common interface for each device. So a groff postprocessor must only
redefine the methods of this class. For details, see the reference in section “Files” below.

EXAMPLES

This section presents the intermediate output generated from the same input for three different devices.
The input is the sentence hell world fed into groff on the command line.

* High-resolution device ps
shell> echo "hell world" | groff -Z -T ps

x T ps

X res 72000 1 1
x init

pl

x font 5 TR
£5

s10000
v12000
H72000
thell
wh2500

tw

H96620
torld
nl2000 O

x trailer
V792000

x stop

This output can be fed into the postprocessor grops(l) to get its representation as a PostScript file, or
gropdf(1) to output directly to PDF.

. Low-resolution device latinl

This is similar to the high-resolution device except that the positioning is done at a minor scale. Some
comments (lines starting with #) were added for clarification; they were not generated by the format-
ter.

shell> "hell world" | groff -Z -T latinl

prologue

x T latinl

x res 240 24 40
x init

begin a new page
pl

font setup

x font 1 R

f1

sl0

initial positioning on the page
V40

groff 1.22.4 21 March 2020 8

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

HO

write text ‘hell’

thell

inform about a space, and do it by a horizontal jump
wh24

write text ‘world’

tworld

announce line break, but do nothing because ...
n40 O

... the end of the document has been reached

x trailer

V2640

x stop

This output can be fed into the postprocessor grotty(1) to get a formatted text document.

Classical style output

As a computer monitor has a very low resolution compared to modern printers the intermediate output
for the X devices can use the jump-and-write command with its 2-digit displacements.

shell> "hell world" | groff -Z -T X100

x T X100

x res 100 1 1

x init

pl

x font 5 TR

£5

s10

v1ie

H100

write text with old-style jump-and-write command
ch07e071031w06wl1007r05103dh7
nlé O

x trailer

V1100

x stop

This output can be fed into the postprocessor xditview(1x) or gxditview(1) for displaying in X.

Due to the obsolete jump-and-write command, the text clusters in the classical output are almost unread-

able.

COMPATIBILITY
The intermediate output language of the classical troff was first documented in [CSTR #97] . The groff in-
termediate output format is compatible with this specification except for the following features.

groff 1.22.4

The classical quasi device independence is not yet implemented.

The old hardware was very different from what we use today. So the groff devices are also fundamen-
tally different from the ones in classical troff. For example, the classical PostScript device was called
post and had a resolution of 720 units per inch, while groff’s ps device has a resolution of 72000 units
per inch. Maybe, by implementing some rescaling mechanism similar to the classical quasi device in-
dependence, these could be integrated into modern groff .

The B-spline command D~ is correctly handled by the intermediate output parser, but the drawing
routines aren’t implemented in some of the postprocessor programs.

The argument of the commands s and x H has the implicit unit scaled point z in groff, while classical
troff had point (p). This isn’t an incompatibility, but a compatible extension, for both units coincide
for all devices without a sizescale parameter, including all classical and the groff text devices. The

21 March 2020 9

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

few groff devices with a sizescale parameter either did not exist, had a different name, or seem to have
had a different resolution. So conflicts with classical devices are very unlikely.

* The position changing after the commands Dp, DP, and Dt is illogical, but as old versions of groff
used this feature it is kept for compatibility reasons.

The differences between groff and classical troff are documented in groff_diff(7).

FILES
/usr/share/groff/1.22.4/font/devname/DESC
Device description file for device name.

src/libs/libdriver/input.cpp
Defines the parser and postprocessor for the intermediate output. It is located relative to the top
directory of the groff source tree. This parser is the definitive specification of the groff intermedi-
ate output format.

AUTHORS

James Clark wrote an early version of this document, which described only the differences between
ditroff(7)’s output format and that of GNU roff. The present version was completely rewritten in 2001 by
Bernd Warken [groff—bernd.warken—72 @web.del]

SEE ALSO
A reference like groff(7) refers to a manual page; here groff in section 7 of the man page documentation
system. To read the example, look up section 7 in your desktop help system or call from the shell prompt

shell> man 7 groff
For more details, see man(1).
groff(1)
option —Z and further readings on groff.
groff(7)
for details of the groff language such as numerical units and escape sequences.

groff_font(5)
for details on the device scaling parameters of the DESC file.

troff(1) generates the device-independent intermediate output.
roff(7) for historical aspects and the general structure of roff systems.
groff_diff(7)

The differences between the intermediate output in groff and classical troff.
gxditview(1)

Viewer for the intermediate output.
grodvi(1), grohtml(1), grolbp(1), grolj4(1), grops(1), grotty(1)

the groff postprocessor programs.

Groff: The GNU Implementation of troff, by Trent A. Fisher and Werner Lemberg, is the primary groff
manual. You can browse it interactively with “info groff”.

The classical troff output language is described in two AT&T Bell Labs CSTR documents available on-line
at Bell Labs CSTR site [http://cm.bell-labs.com/cm/cs/cstr.html[]

[CSTR #97]
A Typesetter-independent TROFF by Brian Kernighan is the original and most comprehensive
documentation on the output language; see CSTR #97 [ttp://cm.bell-labs.com/cm/cs/cstr/
97.ps.gzll

[CSTR #54]
The 1992 revision of the Nroff/Troff User’s Manual by J. F. Ossanna and Brian Kernighan isn’t as
comprehensive as [CSTR #97] regarding the output language; see CSTR #54 [ttp:/

groff 1.22.4 21 March 2020 10

GROFF_OUT(5) File Formats Manual GROFF_OUT(5)

cm.bell-labs.com/cm/cs/cstr/54.ps.gzL]

groff 1.22.4 21 March 2020 11

