
GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

NAME
groff_diff − differences between GNU troff and classical troff

DESCRIPTION
This manual page describes the language differences between groff , the GNU roff text processing system,

and the classical roff formatter of the freely available Unix 7 of the 1970s, documented in the Tr off User’s

Manual by Ossanna and Kernighan. This includes the roff language as well as the intermediate output for-

mat (troff output).

Section “See Also” below giv es pointers to both the classical roff and the modern groff documentation.

GROFF LANGUAGE
In this section, all additional features of groff compared to the classical Unix 7 troff are described in detail.

Long names
The names of number registers, fonts, strings/macros/diversions, special characters (glyphs), and colors can

be of any length. In escape sequences, additionally to the classical ‘(xx’ construction for a two-character

glyph name, you can use ‘[xxx]’ for a name of arbitrary length.

\[xxx] Print the special character (glyph) called xxx.

\[comp1 comp2 . . .]
Print composite glyph consisting of multiple components. Example: ‘\[A ho]’ is capital letter A

with ogonek which finally maps to glyph name ‘u0041_0328’. See Groff: The GNU Implementa-

tion of troff , the groff Te xinfo manual, for details of how a glyph name for a composite glyph is

constructed, and groff_char(7) for a list of glyph name components used in composite glyph

names.

\f[xxx] Set font xxx. Additionally, \f[] is a new syntax form equal to \fP, i.e., to return to the previous

font.

*[xxx arg1 arg2 . . .]
Interpolate string xxx, taking arg1, arg2, . . ., as arguments.

\n[xxx] Interpolate number register xxx.

Fractional point sizes
A scaled point is equal to 1/sizescale points, where sizescale is specified in the DESC file (1 by default).

There is a new scale indicator z that has the effect of multiplying by sizescale. Requests and escape se-

quences in troff interpret arguments that represent a point size as being in units of scaled points, but they

evaluate each such argument using a default scale indicator of z. Arguments treated in this way are the ar-

gument to the ps request, the third argument to the cs request, the second and fourth arguments to the tkf
request, the argument to the \H escape sequence, and those variants of the \s escape sequence that take a nu-

meric expression as their argument.

For example, suppose sizescale is 1000; then a scaled point is equivalent to a millipoint; the call .ps 10.25 is

equivalent to .ps 10.25z and so sets the point size to 10250 scaled points, which is equal to 10.25 points.

The number register \n[.s] returns the point size in points as decimal fraction. There is also a new number

register \n[.ps] that returns the point size in scaled points.

It would make no sense to use the z scale indicator in a numeric expression whose default scale indicator

was neither u nor z, and so troff disallows this. Similarly it would make no sense to use a scaling indicator

other than z or u in a numeric expression whose default scale indicator was z, and so troff disallows this as

well.

There is also new scale indicator s which multiplies by the number of units in a scaled point. So, for exam-

ple, \n[.ps]s is equal to 1m. Be sure not to confuse the s and z scale indicators.

Numeric expressions
Spaces are permitted in a number expression within parentheses.

M indicates a scale of 100ths of an em. f indicates a scale of 65536 units, providing fractions for color def-

initions with the defcolor request. For example, 0.5f = 32768u.

groff 1.22.4 21 March 2020 1

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

e1>?e2 The maximum of e1 and e2.

e1<?e2 The minimum of e1 and e2.

(c;e) Evaluate e using c as the default scaling indicator. If c is missing, ignore scaling indicators in the

evaluation of e.

New escape sequences
\A’anything’

This expands to 1 or 0, depending on whether anything is or is not acceptable as the name of a

string, macro, diversion, number register, environment, font, or color. It returns 0 if anything is

empty. This is useful if you want to look up user input in some sort of associative table.

\B’anything’
This expands to 1 or 0, depending on whether anything is or is not a valid numeric expression. It

returns 0 if anything is empty.

\C’xxx’
Typeset glyph named xxx. Normally it is more convenient to use \[xxx]. But \C has the advantage

that it is compatible with recent versions of Unix and is available in compatibility mode.

\E This is equivalent to an escape character, but it is not interpreted in copy mode. For example,

strings to start and end superscripting could be defined like this

.ds { \v’−.3m’\s’\En[.s]*6u/10u’

.ds } \s0\v’.3m’

The use of \E ensures that these definitions work even if *{ gets interpreted in copy mode (for ex-

ample, by being used in a macro argument).

\F f

\F(fm

\F[fam]
Change font family. This is the same as the fam request. \F[] switches back to the previous font

family (note that \FP won’t work; it selects font family ‘P’ instead).

\mx

\m(xx

\m[xxx]
Set drawing color. \m[] switches back to the previous color.

\Mx

\M(xx

\M[xxx]
Set background color for filled objects drawn with the \D’. . .’ commands. \M[] switches back to

the previous color.

\N’n’ Typeset the glyph with index n in the current font. n can be any integer. Most devices only have

glyphs with indices between 0 and 255. If the current font does not contain a glyph with that code,

special fonts are not searched. The \N escape sequence can be conveniently used in conjunction

with the char request, for example

.char \[phone] \f(ZD\N’37’

The index of each glyph is given in the fourth column in the font description file after the charset
command. It is possible to include unnamed glyphs in the font description file by using a name of

−−−; the \N escape sequence is the only way to use these.

\On

\O[n] Suppress troff output. The escapes \O2, \O3, \O4, and \O5 are intended for internal use by

grohtml.

\O0 Disable any ditroff glyphs from being emitted to the device driver, provided that the es-

cape occurs at the outer level (see \O3 and \O4).

groff 1.22.4 21 March 2020 2

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

\O1 Enable output of glyphs, provided that the escape occurs at the outer level.

\O0 and \O1 also reset the registers \n[opminx], \n[opminy], \n[opmaxx], and \n[op-
maxy] to −1. These four registers mark the top left and bottom right hand corners of a

box which encompasses all written glyphs.

\O2 Provided that the escape occurs at the outer level, enable output of glyphs and also write

out to stderr the page number and four registers encompassing the glyphs previously writ-

ten since the last call to \O.

\O3 Begin a nesting level. At start-up, troff is at outer level. This is really an internal mecha-

nism for grohtml while producing images. They are generated by running the troff

source through troff to the PostScript device and ghostscript to produce images in PNG

format. The \O3 escape starts a new page if the device is not html (to reduce the possibil-

ity of images crossing a page boundary).

\O4 End a nesting level.

\O5[Pfilename]
This escape is grohtml specific. Provided that this escape occurs at the outer nesting

level, write filename to stderr. The position of the image, P, must be specified and must

be one of l, r, c, or i (left, right, centered, inline). filename is associated with the produc-

tion of the next inline image.

\R’name ±n’
This has the same effect as

.nr name ±n

\s(nn

\s±(nn Set the point size to nn points; nn must be exactly two digits.

\s[±n]
\s±[n]
\s’±n’
\s±’n’ Set the point size to n scaled points; n is a numeric expression with a default scale indicator of z.

\Vx

\V(xx

\V[xxx]
Interpolate the contents of the environment variable xxx, as returned by getenv(3). \V is inter-

preted in copy mode.

\Yx

\Y(xx

\Y[xxx]
This is approximately equivalent to \X’*[xxx]’. Howev er the contents of the string or macro xxx

are not interpreted; also it is permitted for xxx to have been defined as a macro and thus contain

newlines (it is not permitted for the argument to \X to contain newlines). The inclusion of new-

lines requires an extension to the Unix troff output format, and confuses drivers that do not know

about this extension.

\Z’anything’
Print anything and then restore the horizontal and vertical position; anything may not contain tabs

or leaders.

\$0 The name by which the current macro was invoked. The als request can make a macro have more

than one name.

\$* In a macro or string, the concatenation of all the arguments separated by spaces.

\$@ In a macro or string, the concatenation of all the arguments with each surrounded by double

quotes, and separated by spaces.

groff 1.22.4 21 March 2020 3

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

\$ˆ In a macro, the representation of all parameters as if they were an argument to the ds request.

\$(nn

\$[nnn] In a macro or string, this gives the nn-th or nnn-th argument. Macros and strings can have an un-

limited number of arguments.

\?anything\?
When used in a diversion, this transparently embeds anything in the diversion. anything is read in

copy mode. When the diversion is reread, anything is interpreted. anything may not contain new-

lines; use \! if you want to embed newlines in a diversion. The escape sequence \? is also recog-

nized in copy mode and turned into a single internal code; it is this code that terminates anything.

Thus

.nr x 1

.nf

.di d

\?\\?\\\\?\\\\\\\\nx\\\\?\\?\?

.di

.nr x 2

.di e

.d

.di

.nr x 3

.di f

.e

.di

.nr x 4

.f

prints 4.

\/ This increases the width of the preceding glyph so that the spacing between that glyph and the fol-

lowing glyph is correct if the following glyph is a roman glyph. For example, if an italic f is im-

mediately followed by a roman right parenthesis, then in many fonts the top right portion of the f

overlaps the top left of the right parenthesis producing f), which is ugly. Inserting \/ produces f)

and avoids this problem. It is a good idea to use this escape sequence whenever an italic glyph is

immediately followed by a roman glyph without any intervening space.

\, This modifies the spacing of the following glyph so that the spacing between that glyph and the

preceding glyph is correct if the preceding glyph is a roman glyph. For example, inserting \, be-

tween the parenthesis and the f changes (f to (f. It is a good idea to use this escape sequence

whenever a roman glyph is immediately followed by an italic glyph without any intervening space.

\) Like \& except that it behaves like a character declared with the cflags request to be transparent

for the purposes of end-of-sentence recognition.

\~ This produces an unbreakable space that stretches like a normal inter-word space when a line is

adjusted.

\: This causes the insertion of a zero-width break point. It is equal to \% within a word but without

insertion of a soft hyphen glyph.

\# Everything up to and including the next newline is ignored. This is interpreted in copy mode. It is

like \" except that \" does not ignore the terminating newline.

New requests
.aln xx yy

Create an alias xx for number register object named yy. The new name and the old name are ex-

actly equivalent. If yy is undefined, a warning of type reg is generated, and the request is ignored.

groff 1.22.4 21 March 2020 4

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.als xx yy

Create an alias xx for request, string, macro, or diversion object named yy. The new name and the

old name are exactly equivalent (it is similar to a hard rather than a soft link). If yy is undefined, a

warning of type mac is generated, and the request is ignored. The de, am, di, da, ds, and as re-

quests only create a new object if the name of the macro, diversion or string is currently undefined

or if it is defined to be a request; normally they modify the value of an existing object.

.am1 xx yy

Similar to .am, but compatibility mode is switched off during execution. To be more precise, a

‘compatibility save’ token is inserted at the beginning of the macro addition, and a ‘compatibility

restore’ token at the end. As a consequence, the requests am, am1, de, and de1 can be intermixed

freely since the compatibility save/restore tokens only affect the macro parts defined by .am1 and

.ds1.

.ami xx yy

Append to macro indirectly. See the dei request below for more information.

.ami1 xx yy

Same as the ami request but compatibility mode is switched off during execution.

.as1 xx yy

Similar to .as, but compatibility mode is switched off during expansion. To be more precise, a

‘compatibility save’ token is inserted at the beginning of the string, and a ‘compatibility restore’

token at the end. As a consequence, the requests as, as1, ds, and ds1 can be intermixed freely

since the compatibility save/restore tokens only affect the (sub)strings defined by as1 and ds1.

.asciify xx

This request ‘unformats’ the diversion xx in such a way that ASCII and space characters (and

some escape sequences) that were formatted and diverted into xx are treated like ordinary input

characters when xx is reread. Useful for diversions in conjunction with the writem request. It can

be also used for gross hacks; for example, this

.tr @.

.di x

@nr n 1

.br

.di

.tr @@

.asciify x

.x

sets register n to 1. Note that glyph information (font, font size, etc.) is not preserved; use .unfor-
mat instead.

.backtrace
Print a backtrace of the input stack on stderr.

.blm xx

Set the blank line macro to xx. If there is a blank line macro, it is invoked when a blank line is en-

countered instead of the usual troff behaviour.

.box xx

.boxa xx

These requests are similar to the di and da requests with the exception that a partially filled line

does not become part of the diversion (i.e., the diversion always starts with a new line) but is re-

stored after ending the diversion, discarding the partially filled line which possibly comes from the

diversion.

.break Break out of a while loop. See also the while and continue requests. Be sure not to confuse this

with the br request.

groff 1.22.4 21 March 2020 5

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.brp This is the same as \p.

.cflags n c1 c2 . . .

Characters c1, c2, . . ., hav e properties determined by n, which is ORed from the following:

1 The character ends sentences (initially characters .?! have this property).

2 Lines can be broken before the character (initially no characters have this property); a line

is not broken at a character with this property unless the characters on each side both

have non-zero hyphenation codes. This can be overridden with value 64.

4 Lines can be broken after the character (initially characters −\[hy]\[em] have this prop-

erty); a line is not broken at a character with this property unless the characters on each

side both have non-zero hyphenation codes. This can be overridden with value 64.

8 The glyph associated with this character overlaps horizontally (initially characters

\[ul]\[rn]\[ru]\[radicalex]\[sqrtex] have this property).

16 The glyph associated with this character overlaps vertically (initially glyph \[br] has this

property).

32 An end-of-sentence character followed by any number of characters with this property is

treated as the end of a sentence if followed by a newline or two spaces; in other words the

character is transparent for the purposes of end-of-sentence recognition; this is the same

as having a zero space factor in TEX (initially characters "’)]*\[dg]\[rq]\[cq] have this

property).

64 Ignore hyphenation code values of the surrounding characters. Use this in combination

with values 2 and 4 (initially no characters have this property).

128 Prohibit a line break before the character, but allow a line break after the character. This

works only in combination with flags 256 and 512 and has no effect otherwise.

256 Prohibit a line break after the character, but allow a line break before the character. This

works only in combination with flags 128 and 512 and has no effect otherwise.

512 Allow line break before or after the character. This works only in combination with flags

128 and 256 and has no effect otherwise.

Contrary to flag values 2 and 4, the flags 128, 256, and 512 work pairwise. If, for example, the left

character has value 512, and the right character 128, no line break gets inserted. If we use value 6

instead for the left character, a line break after the character can’t be suppressed since the right

neighbour character doesn’t get examined.

.char c string

[This request can both define characters and glyphs.]

Define entity c to be string. To be more precise, define (or even override) a groff entity which can

be accessed with name c on the input side, and which uses string on the output side. Every time

glyph c needs to be printed, string is processed in a temporary environment and the result is

wrapped up into a single object. Compatibility mode is turned off and the escape character is set

to \ while string is being processed. Any emboldening, constant spacing or track kerning is ap-

plied to this object rather than to individual glyphs in string.

A groff object defined by this request can be used just like a normal glyph provided by the output

device. In particular other characters can be translated to it with the tr request; it can be made the

leader glyph by the lc request; repeated patterns can be drawn with the glyph using the \l and \L
escape sequences; words containing c can be hyphenated correctly, if the hcode request is used to

give the object a hyphenation code.

There is a special anti-recursion feature: Use of glyph within the glyph’s definition is handled like

normal glyphs not defined with char.

A glyph definition can be removed with the rchar request.

groff 1.22.4 21 March 2020 6

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.chop xx

Chop the last element off macro, string, or diversion xx. This is useful for removing the newline

from the end of diversions that are to be interpolated as strings.

.class name c1 c2 . . .

Assign name to a set of characters c1, c2, . . ., so that they can be referred to from other requests

easily (currently .cflags only). Character ranges (indicated by an intermediate ‘−’) and nested

classes are possible also. This is useful to assign properties to a large set of characters.

.close stream

Close the stream named stream; stream will no longer be an acceptable argument to the write re-

quest. See the open request.

.composite glyph1 glyph2

Map glyph name glyph1 to glyph name glyph2 if it is used in \[. . .] with more than one compo-

nent.

.continue
Finish the current iteration of a while loop. See also the while and break requests.

.color n

If n is non-zero or missing, enable colors (this is the default), otherwise disable them.

.cp n If n is non-zero or missing, enable compatibility mode, otherwise disable it. In compatibility

mode, long names are not recognized, and the incompatibilities caused by long names do not arise.

.defcolor xxx scheme color_components

Define color xxx. scheme can be one of the following values: rgb (three components), cmy (three

components), cmyk (four components), and gray or grey (one component). Color components

can be given either as a hexadecimal string or as positive decimal integers in the range 0–65535.

A hexadecimal string contains all color components concatenated; it must start with either # or ##.

The former specifies hex values in the range 0–255 (which are internally multiplied by 257), the

latter in the range 0–65535. Examples: #FFC0CB (pink), ##ffff0000ffff (magenta). A new scaling

indicator f has been introduced which multiplies its value by 65536; this makes it convenient to

specify color components as fractions in the range 0 to 1. Example:

.defcolor darkgreen rgb 0.1f 0.5f 0.2f

Note that f is the default scaling indicator for the defcolor request, thus the above statement is

equivalent to

.defcolor darkgreen rgb 0.1 0.5 0.2

The color named default (which is device-specific) can’t be redefined. It is possible that the de-

fault color for \M and \m is not the same.

.de1 xx yy

Similar to .de, but compatibility mode is switched off during execution. On entry, the current

compatibility mode is saved and restored at exit.

.dei xx yy

Define macro indirectly. The following example

.ds xx aa

.ds yy bb

.dei xx yy

is equivalent to

.de aa bb

.dei1 xx yy

Similar to the dei request but compatibility mode is switched off during execution.

groff 1.22.4 21 March 2020 7

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.device anything

This is (almost) the same as the \X escape. anything is read in copy mode; a leading " is stripped.

.devicem xx

This is the same as the \Y escape (to embed the contents of a macro into the intermediate output

preceded with ‘x X’).

.do xxx Interpret .xxx with compatibility mode disabled. For example,

.do fam T

would have the same effect as

.fam T

except that it would work even if compatibility mode had been enabled. Note that the previous

compatibility mode is restored before any files sourced by xxx are interpreted.

.ds1 xx yy

Similar to .ds, but compatibility mode is switched off during expansion. To be more precise, a

‘compatibility save’ token is inserted at the beginning of the string, and a ‘compatibility restore’

token at the end.

.ecs Save current escape character.

.ecr Restore escape character saved with ecs. Without a previous call to ecs, ‘\’ will be the new escape

character.

.evc xx Copy the contents of environment xx to the current environment. No pushing or popping of envi-

ronments is done.

.fam xx

Set the current font family to xx. The current font family is part of the current environment. If xx

is missing, switch back to previous font family. The value at start-up is ‘T’. See the description of

the sty request for more information on font families.

.fchar c string

Define fallback character (or glyph) c to be string. The syntax of this request is the same as the

char request; the only difference is that a glyph defined with char hides the glyph with the same

name in the current font, whereas a glyph defined with fchar is checked only if the particular

glyph isn’t found in the current font. This test happens before checking special fonts.

.fcolor c

Set the fill color to c. If c is missing, switch to the previous fill color.

.fschar f c string

Define fallback character (or glyph) c for font f to be string. The syntax of this request is the

same as the char request (with an additional argument to specify the font); a glyph defined with

fschar is searched after the list of fonts declared with the fspecial request but before the list of

fonts declared with .special.

.fspecial f s1 s2 . . .

When the current font is f , fonts s1, s2, . . ., are special, that is, they are searched for glyphs not in

the current font. Any fonts specified in the special request are searched after fonts specified in the

fspecial request. Without argument, reset the list of global special fonts to be empty.

.ftr f g Translate font f to g. Whenever a font named f is referred to in an \f escape sequence, in the F
and S conditional operators, or in the ft, ul, bd, cs, tkf, special, fspecial, fp, or sty requests, font g

is used. If g is missing, or equal to f then font f is not translated.

.fzoom f zoom

Set zoom factor zoom for font f . zoom must a non-negative integer multiple of 1/1000th. If it is

missing or is equal to zero, it means the same as 1000, namely no magnification. f must be a real

font name, not a style.

groff 1.22.4 21 March 2020 8

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.gcolor c

Set the glyph color to c. If c is missing, switch to the previous glyph color.

.hcode c1 code1 c2 code2 . . .

Set the hyphenation code of character c1 to code1 and that of c2 to code2, and so on. A hyphena-

tion code must be a single input character (not a special character) other than a digit or a space.

Initially each lower-case letter a–z has a hyphenation code, which is itself, and each upper-case

letter A–Z has a hyphenation code which is the lower-case version of itself. See also the hpf re-

quest.

.hla lang

Set the current hyphenation language to lang. Hyphenation exceptions specified with the hw re-

quest and hyphenation patterns specified with the hpf request are both associated with the current

hyphenation language. The hla request is usually invoked by the troffrc file to set up a default

language.

.hlm n Set the maximum number of consecutive hyphenated lines to n. If n is negative, there is no maxi-

mum. The default value is −1. This value is associated with the current environment. Only lines

output from an environment count towards the maximum associated with that environment. Hy-

phens resulting from \% are counted; explicit hyphens are not.

.hpf file

Read hyphenation patterns from file; this is searched for in the same way that name.tmac is

searched for when the −mname option is specified. It should have the same format as (simple)

TEX patterns files. More specifically, the following scanning rules are implemented.

• A percent sign starts a comment (up to the end of the line) even if preceded by a back-

slash.

• No support for ‘digraphs’ like \$.

• ˆˆxx (x is 0–9 or a–f) and ˆˆx (character code of x in the range 0–127) are recognized;

other use of ˆ causes an error.

• No macro expansion.

• hpf checks for the expression \patterns{. . .} (possibly with whitespace before and after

the braces). Everything between the braces is taken as hyphenation patterns. Conse-

quently, { and } are not allowed in patterns.

• Similarly, \hyphenation{. . .} gives a list of hyphenation exceptions.

• \endinput is recognized also.

• For backwards compatibility, if \patterns is missing, the whole file is treated as a list of

hyphenation patterns (only recognizing the % character as the start of a comment).

Use the hpfcode request to map the encoding used in hyphenation patterns files to groff’s input

encoding. By default, everything maps to itself except letters ‘A’ to ‘Z’ which map to ‘a’ to ‘z’.

The set of hyphenation patterns is associated with the current language set by the hla request. The

hpf request is usually invoked by the troffrc file; a second call replaces the old patterns with the

new ones.

.hpfa file

The same as hpf except that the hyphenation patterns from file are appended to the patterns al-

ready loaded in the current language.

.hpfcode a b c d . . .

After reading a hyphenation patterns file with the hpf or hpfa request, convert all characters with

character code a in the recently read patterns to character code b, character code c to d , etc. Ini-

tially, all character codes map to themselves. The arguments of hpfcode must be integers in the

range 0 to 255. Note that it is even possible to use character codes which are invalid in groff oth-

erwise.

groff 1.22.4 21 March 2020 9

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.hym n Set the hyphenation margin to n: when the current adjustment mode is not b, the line is not hy-

phenated if the line is no more than n short. The default hyphenation margin is 0. The default

scaling indicator for this request is m. The hyphenation margin is associated with the current envi-

ronment. The current hyphenation margin is available in the \n[.hym] register.

.hys n Set the hyphenation space to n: When the current adjustment mode is b don’t hyphenate the line if

the line can be justified by adding no more than n extra space to each word space. The default hy-

phenation space is 0. The default scaling indicator for this request is m. The hyphenation space is

associated with the current environment. The current hyphenation space is available in the

\n[.hys] register.

.itc n macro

Variant of .it for which a line interrupted with \c is not counted as an input line.

.kern n If n is non-zero or missing, enable pairwise kerning, otherwise disable it.

.length xx string

Compute the length of string and return it in the number register xx (which is not necessarily de-

fined before).

.linetabs n

If n is non-zero or missing, enable line-tabs mode, otherwise disable it (which is the default). In

line-tabs mode, tab distances are computed relative to the (current) output line. Otherwise they are

taken relative to the input line. For example, the following

.ds x a\t\c

.ds y b\t\c

.ds z c

.ta 1i 3i

*x

*y

*z

yields

a b c

In line-tabs mode, the same code gives

a b c

Line-tabs mode is associated with the current environment; the read-only number register

\n[.linetabs] is set to 1 if in line-tabs mode, and 0 otherwise.

.lsm xx Set the leading spaces macro to xx. If there are leading spaces in an input line, it is invoked in-

stead of the usual troff behaviour; the leading spaces are removed. Registers \n[lsn] and \n[lss]
hold the number of removed leading spaces and the corresponding horizontal space, respectively.

.mso file

The same as the so request except that file is searched for in the same directories as macro files for

the −m command-line option. If the file name to be included has the form name.tmac and it isn’t

found, mso tries to include tmac.name instead and vice versa. A warning of type file is generated

if file can’t be loaded, and the request is ignored.

.nop anything

Execute anything. This is similar to ‘.if 1’.

.nroff Make the n built-in condition true and the t built-in condition false. This can be reversed using the

troff request.

.open stream filename

Open filename for writing and associate the stream named stream with it. See also the close and

write requests.

groff 1.22.4 21 March 2020 10

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.opena stream filename

Like open, but if filename exists, append to it instead of truncating it.

.output string

Emit string directly to the intermediate output (subject to copy-mode interpretation); this is similar

to \! used at the top level. An initial double quote in string is stripped off to allow initial blanks.

.pev Print the current environment and each defined environment state on stderr.

.pnr Print the names and contents of all currently defined number registers on stderr.

.psbb filename

Get the bounding box of a PostScript image filename. This file must conform to Adobe’s Docu-

ment Structuring Conventions; the command looks for a %%BoundingBox comment to extract

the bounding box values. After a successful call, the coordinates (in PostScript units) of the lower

left and upper right corner can be found in the registers \n[llx], \n[lly], \n[urx], and \n[ury], re-

spectively. If some error has occurred, the four registers are set to zero.

.pso command

This behaves like the so request except that input comes from the standard output of command .

.ptr Print the names and positions of all traps (not including input line traps and diversion traps) on

stderr. Empty slots in the page trap list are printed as well, because they can affect the priority of

subsequently planted traps.

.pvs ±n Set the post-vertical line space to n; default scale indicator is p. This value is added to each line

after it has been output. With no argument, the post-vertical line space is set to its previous value.

The total vertical line spacing consists of four components: .vs and \x with a negative value which

are applied before the line is output, and .pvs and \x with a positive value which are applied after

the line is output.

.rchar c1 c2 . . .

Remove the definitions of glyphs c1, c2, . . . This undoes the effect of a char request.

.return Within a macro, return immediately. If called with an argument, return twice, namely from the

current macro and from the macro one level higher. No effect otherwise.

.rfschar c1 c2 . . .

Remove the font-specific definitions of glyphs c1, c2, . . . This undoes the effect of an fschar re-

quest.

.rj

.rj n Right justify the next n input lines. Without an argument right justify the next input line. The

number of lines to be right justified is available in the \n[.rj] register. This implicitly does .ce 0.

The ce request implicitly does .rj 0.

.rnn xx yy

Rename number register xx to yy.

.schar c string

Define global fallback character (or glyph) c to be string. The syntax of this request is the same as

the char request; a glyph defined with schar is searched after the list of fonts declared with the

special request but before the mounted special fonts.

.shc c Set the soft hyphen character to c. If c is omitted, the soft hyphen character is set to the default

\[hy]. The soft hyphen character is the glyph which is inserted when a word is hyphenated at a

line break. If the soft hyphen character does not exist in the font of the glyph immediately preced-

ing a potential break point, then the line is not broken at that point. Neither definitions (specified

with the char request) nor translations (specified with the tr request) are considered when finding

the soft hyphen character.

.shift n In a macro, shift the arguments by n positions: argument i becomes argument i − n; arguments 1

to n are no longer available. If n is missing, arguments are shifted by 1. Shifting by negative

groff 1.22.4 21 March 2020 11

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

amounts is currently undefined.

.sizes s1 s2 . . . sn [0]
This command is similar to the sizes command of a DESC file. It sets the available font sizes for

the current font to s1, s2, . . . , sn scaled points. The list of sizes can be terminated by an op-

tional 0. Each si can also be a range of sizes m–n. Contrary to the font file command, the list

can’t extend over more than a single line.

.special s1 s2 . . .

Fonts s1, s2, . . ., are special and are searched for glyphs not in the current font. Without argu-

ments, reset the list of special fonts to be empty.

.spreadwarn limit

Make troff emit a warning if the additional space inserted for each space between words in an out-

put line is larger or equal to limit. A negative value is changed to zero; no argument toggles the

warning on and off without changing limit. The default scaling indicator is m. At startup,

spreadwarn is deactivated, and limit is set to 3m. For example, .spreadwarn 0.2m causes a

warning if troff must add 0.2m or more for each interword space in a line. This request is active

only if text is justified to both margins (using .ad b).

.sty n f Associate style f with font position n. A font position can be associated either with a font or with

a style. The current font is the index of a font position and so is also either a font or a style. When

it is a style, the font that is actually used is the font the name of which is the concatenation of the

name of the current family and the name of the current style. For example, if the current font is 1

and font position 1 is associated with style R and the current font family is T, then font TR is

used. If the current font is not a style, then the current family is ignored. When the requests cs,

bd, tkf, uf, or fspecial are applied to a style, then they are applied instead to the member of the

current family corresponding to that style. The default family can be set with the −f command-

line option. The styles command in the DESC file controls which font positions (if any) are ini-

tially associated with styles rather than fonts.

.substring xx n1 [n2]
Replace the string named xx with the substring defined by the indices n1 and n2. The first charac-

ter in the string has index 0. If n2 is omitted, it is taken to be equal to the string’s length. If the in-

dex value n1 or n2 is negative, it is counted from the end of the string, going backwards: The last

character has index −1, the character before the last character has index −2, etc.

.tkf f s1 n1 s2 n2

Enable track kerning for font f . When the current font is f the width of every glyph is increased

by an amount between n1 and n2; when the current point size is less than or equal to s1 the width

is increased by n1; when it is greater than or equal to s2 the width is increased by n2; when the

point size is greater than or equal to s1 and less than or equal to s2 the increase in width is a linear

function of the point size.

.tm1 string

Similar to the tm request, string is read in copy mode and written on the standard error, but an ini-

tial double quote in string is stripped off to allow initial blanks.

.tmc string

Similar to tm1 but without writing a final newline.

.trf filename

Transparently output the contents of file filename. Each line is output as if preceded by \!; how-

ev er, the lines are not subject to copy-mode interpretation. If the file does not end with a newline,

then a newline is added. For example, you can define a macro x containing the contents of file f ,

using

.di x

.trf f

.di

groff 1.22.4 21 March 2020 12

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

Unlike with the cf request, the file cannot contain characters, such as NUL, that are not valid troff

input characters.

.trin abcd

This is the same as the tr request except that the asciify request uses the character code (if any) be-

fore the character translation. Example:

.trin ax

.di xxx

a

.br

.di

.xxx

.trin aa

.asciify xxx

.xxx

The result is x a. Using tr, the result would be x x.

.trnt abcd

This is the same as the tr request except that the translations do not apply to text that is transpar-

ently throughput into a diversion with \!. For example,

.tr ab

.di x

\!.tm a

.di

.x

prints b; if trnt is used instead of tr it prints a.

.troff Make the n built-in condition false, and the t built-in condition true. This undoes the effect of the

nroff request.

.unformat xx

This request ‘unformats’ the diversion xx. Contrary to the asciify request, which tries to convert

formatted elements of the diversion back to input tokens as much as possible, .unformat only han-

dles tabs and spaces between words (usually caused by spaces or newlines in the input) specially.

The former are treated as if they were input tokens, and the latter are stretchable again. Note that

the vertical size of lines is not preserved. Glyph information (font, font size, space width, etc.) is

retained. Useful in conjunction with the box and boxa requests.

.vpt n Enable vertical position traps if n is non-zero, disable them otherwise. Vertical position traps are

traps set by the wh or dt requests. Traps set by the it request are not vertical position traps. The

parameter that controls whether vertical position traps are enabled is global. Initially vertical posi-

tion traps are enabled.

.warn n

Control warnings. n is the sum of the numbers associated with each warning that is to be enabled;

all other warnings are disabled. The number associated with each warning is listed in troff(1).

For example, .warn 0 disables all warnings, and .warn 1 disables all warnings except that about

missing glyphs. If n is not given, all warnings are enabled.

.warnscale si

Set the scaling indicator used in warnings to si. Valid values for si are u, i, c, p, and P. At startup,

it is set to i.

.while c anything

While condition c is true, accept anything as input; c can be any condition acceptable to an if re-

quest; anything can comprise multiple lines if the first line starts with \{ and the last line ends with

\}. See also the break and continue requests.

groff 1.22.4 21 March 2020 13

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

.write stream anything

Write anything to the stream named stream. stream must previously have been the subject of an

open request. anything is read in copy mode; a leading " is stripped.

.writec stream anything

Similar to write but without writing a final newline.

.writem stream xx

Write the contents of the macro or string xx to the stream named stream. stream must previously

have been the subject of an open request. xx is read in copy mode.

Extended escape sequences
\D’. . .’ All drawing commands of groff’s intermediate output are accepted. See subsection “Drawing

Commands” below.

Extended requests
.cf filename

When used in a diversion, this embeds in the diversion an object which, when reread, will cause

the contents of filename to be transparently copied through to the output. In Unix troff, the con-

tents of filename is immediately copied through to the output regardless of whether there is a cur-

rent diversion; this behaviour is so anomalous that it must be considered a bug.

.de xx yy

.am xx yy

.ds xx yy

.as xx yy

In compatibility mode, these requests behaves similar to .de1, .am1, .ds1, and .as1, respectively:

A ‘compatibility save’ token is inserted at the beginning, and a ‘compatibility restore’ token at the

end, with compatibility mode switched on during execution.

.ev xx If xx is not a number, this switches to a named environment called xx. The environment should be

popped with a matching ev request without any arguments, just as for numbered environments.

There is no limit on the number of named environments; they are created the first time that they

are referenced.

.hy n New additive values 16 and 32 are available; the former enables hyphenation before the last char-

acter, the latter enables hyphenation after the first character.

.ss m n When two arguments are given to the ss request, the second argument gives the sentence space

size. If the second argument is not given, the sentence space size is the same as the word space

size. Like the word space size, the sentence space is in units of one twelfth of the spacewidth pa-

rameter for the current font. Initially both the word space size and the sentence space size are 12.

Contrary to Unix troff, GNU troff handles this request in nroff mode also; a given value is then

rounded down to the nearest multiple of 12. The sentence space size is used in two circumstances.

If the end of a sentence occurs at the end of a line in fill mode, then both an inter-word space and a

sentence space are added; if two spaces follow the end of a sentence in the middle of a line, then

the second space is a sentence space. Note that the behaviour of Unix troff is exactly that exhib-

ited by GNU troff if a second argument is never giv en to the ss request. In GNU troff, as in Unix

troff, you should always follow a sentence with either a newline or two spaces.

.ta n1 n2 . . . nn T r1 r2 . . . rn

Set tabs at positions n1, n2, . . ., nn and then set tabs at nn + r1, nn + r2, . . ., nn + rn and then at

nn + rn + r1, nn + rn + r2, . . ., nn + rn + rn, and so on. For example,

.ta T .5i

sets tabs every half an inch.

New number registers
The following read-only registers are available:

groff 1.22.4 21 March 2020 14

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

\n[.br] Within a macro call, it is set to 1 if the macro is called with the ‘normal’ control character (‘.’ by

default), and set to 0 otherwise. This allows the reliable modification of requests.

.als bp*orig bp

.de bp

.tm before bp

.ie \\n[.br] .bp*orig

.el ’bp*orig

.tm after bp

..

Using this register outside of a macro makes no sense (it always returns zero in such cases).

\n[.C] 1 if compatibility mode is in effect, 0 otherwise.

\n[.cdp]
The depth of the last glyph added to the current environment. It is positive if the glyph extends be-

low the baseline.

\n[.ce] The number of lines remaining to be centered, as set by the ce request.

\n[.cht] The height of the last glyph added to the current environment. It is positive if the glyph extends

above the baseline.

\n[.color]
1 if colors are enabled, 0 otherwise.

\n[.csk]
The skew of the last glyph added to the current environment. The skew of a glyph is how far to the

right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.ev] The name or number of the current environment. This is a string-valued register.

\n[.fam]
The current font family. This is a string-valued register.

\n[.fn] The current (internal) real font name. This is a string-valued register. If the current font is a style,

the value of \n[.fn] is the proper concatenation of family and style name.

\n[.fp] The number of the next free font position.

\n[.g] Always 1. Macros should use this to determine whether they are running under GNU troff.

\n[.height]
The current height of the font as set with \H.

\n[.hla] The current hyphenation language as set by the hla request.

\n[.hlc] The number of immediately preceding consecutive hyphenated lines.

\n[.hlm]
The maximum allowed number of consecutive hyphenated lines, as set by the hlm request.

\n[.hy] The current hyphenation flags (as set by the hy request).

\n[.hym]
The current hyphenation margin (as set by the hym request).

\n[.hys]
The current hyphenation space (as set by the hys request).

\n[.in] The indentation that applies to the current output line.

\n[.int] Set to a positive value if last output line is interrupted (i.e., if it contains \c).

\n[.kern]
1 if pairwise kerning is enabled, 0 otherwise.

groff 1.22.4 21 March 2020 15

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

\n[.lg] The current ligature mode (as set by the lg request).

\n[.linetabs]
The current line-tabs mode (as set by the linetabs request).

\n[.ll] The line length that applies to the current output line.

\n[.lt] The title length as set by the lt request.

\n[.m] The name of the current drawing color. This is a string-valued register.

\n[.M] The name of the current background color. This is a string-valued register.

\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung. Useful

in conjunction with the \n[.trunc] register.

\n[.ns] 1 if no-space mode is active, 0 otherwise.

\n[.O] The current output level as set with \O.

\n[.P] 1 if the current page is in the output list set with −o.

\n[.pe] 1 during a page ejection caused by the bp request, 0 otherwise.

\n[.pn] The number of the next page, either the value set by a pn request, or the number of the current

page plus 1.

\n[.ps] The current point size in scaled points.

\n[.psr]
The last-requested point size in scaled points.

\n[.pvs]
The current post-vertical line space as set with the pvs request.

\n[.rj] The number of lines to be right-justified as set by the rj request.

\n[.slant]
The slant of the current font as set with \S.

\n[.sr] The last requested point size in points as a decimal fraction. This is a string-valued register.

\n[.ss]
\n[.sss] These give the values of the parameters set by the first and second arguments of the ss request.

\n[.sty] The current font style. This is a string-valued register.

\n[.tabs]
A string representation of the current tab settings suitable for use as an argument to the ta request.

\n[.trunc]
The amount of vertical space truncated by the most recently sprung vertical position trap, or, if the

trap was sprung by an ne request, minus the amount of vertical motion produced by the ne request.

In other words, at the point a trap is sprung, it represents the difference of what the vertical posi-

tion would have been but for the trap, and what the vertical position actually is. Useful in conjunc-

tion with the \n[.ne] register.

\n[.U] Set to 1 if in safer mode and to 0 if in unsafe mode (as given with the −U command-line option).

\n[.vpt]
1 if vertical position traps are enabled, 0 otherwise.

\n[.warn]
The sum of the numbers associated with each of the currently enabled warnings. The number as-

sociated with each warning is listed in troff(1).

\n[.x] The major version number. For example, if the version number is 1.03, then \n[.x] contains 1.

\n[.y] The minor version number. For example, if the version number is 1.03, then \n[.y] contains 03.

groff 1.22.4 21 March 2020 16

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

\n[.Y] The revision number of groff.

\n[.zoom]
The zoom value of the current font, in multiples of 1/1000th. Zero if no magnification.

\n[llx]
\n[lly]
\n[urx]
\n[ury] These four read/write registers are set by the psbb request and contain the bounding box values (in

PostScript units) of a given PostScript image.

The following read/write registers are set by the \w escape sequence:

\n[rst]
\n[rsb] Like the st and sb registers, but take account of the heights and depths of glyphs.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph before a

subscript.

\n[skw]
How far to right of the center of the last glyph in the \w argument, the center of an accent from a

roman font should be placed over that glyph.

Other available read/write number registers are:

\n[c.] The current input line number. \n[.c] is a read-only alias to this register.

\n[hours]
The number of hours past midnight. Initialized at start-up.

\n[hp] The current horizontal position at input line.

\n[lsn]
\n[lss] If there are leading spaces in an input line, these registers hold the number of leading spaces and

the corresponding horizontal space, respectively.

\n[minutes]
The number of minutes after the hour. Initialized at start-up.

\n[seconds]
The number of seconds after the minute. Initialized at start-up.

\n[systat]
The return value of the system() function executed by the last sy request.

\n[slimit]
If greater than 0, the maximum number of objects on the input stack. If less than or equal to 0,

there is no limit on the number of objects on the input stack. With no limit, recursion can continue

until virtual memory is exhausted.

\n[year]
The current year. Note that the traditional troff number register \n[yr] is the current year minus

1900.

Miscellaneous
troff predefines a single (read/write) string-based register, *[.T], which contains the argument given to the

−T command-line option, namely the current output device (for example, latin1 or ascii). Note that this is

not the same as the (read-only) number register \n[.T] which is defined to be 1 if troff is called with the −T
command-line option, and zero otherwise. This behaviour is different from Unix troff.

Fonts not listed in the DESC file are automatically mounted on the next available font position when they

are referenced. If a font is to be mounted explicitly with the fp request on an unused font position, it should

be mounted on the first unused font position, which can be found in the \n[.fp] register; although troff does

not enforce this strictly, it does not allow a font to be mounted at a position whose number is much greater

than that of any currently used position.

groff 1.22.4 21 March 2020 17

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

Interpolating a string does not hide existing macro arguments. Thus in a macro, a more efficient way of do-

ing

.xx \\$@

is

*[xx]\\

If the font description file contains pairwise kerning information, glyphs from that font are kerned. Kerning

between two glyphs can be inhibited by placing a \& between them.

In a string comparison in a condition, characters that appear at different input levels to the first delimiter

character are not recognized as the second or third delimiters. This applies also to the tl request. In a \w
escape sequence, a character that appears at a different input level to the starting delimiter character is not

recognized as the closing delimiter character. The same is true for \A, \b, \B, \C, \l, \L, \o, \X, and \Z.

When decoding a macro or string argument that is delimited by double quotes, a character that appears at a

different input level to the starting delimiter character is not recognized as the closing delimiter character.

The implementation of \$@ ensures that the double quotes surrounding an argument appear at the same in-

put level, which is different to the input level of the argument itself. In a long escape name] is not recog-

nized as a closing delimiter except when it occurs at the same input level as the opening [. In compatibility

mode, no attention is paid to the input-level.

There are some new types of condition:

.if rxxx True if there is a number register named xxx.

.if dxxx True if there is a string, macro, diversion, or request named xxx.

.if mxxx

True if there is a color named xxx.

.if cch True if there is a character (or glyph) ch available; ch is either an ASCII character or a glyph (spe-

cial character) \N’xxx’, \(xx or \[xxx]; the condition is also true if ch has been defined by the char
request.

.if F f True if font f exists. f is handled as if it was opened with the ft request (this is, font translation

and styles are applied), without actually mounting it.

.if Ss True if style s has been registered. Font translation is applied.

The tr request can now map characters onto \~.

The space width emitted by the \| and \ˆ escape sequences can be controlled on a per-font basis. If there is a

glyph named \| or \ˆ, respectively (note the leading backslash), defined in the current font file, use this

glyph’s width instead of the default value.

It is now possible to have whitespace between the first and second dot (or the name of the ending macro) to

end a macro definition. Example:

.if t \{\

. de bar

. nop Hello, I’m ‘bar’.

. .

.\}

INTERMEDIATE OUTPUT FORMAT
This section describes the format output by GNU troff. The output format used by GNU troff is very simi-

lar to that used by Unix device-independent troff. Only the differences are documented here.

Units
The argument to the s command is in scaled points (units of points/n, where n is the argument to the

sizescale command in the DESC file). The argument to the x Height command is also in scaled points.

groff 1.22.4 21 March 2020 18

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

Text Commands
Nn Print glyph with index n (a non-negative integer) of the current font.

If the tcommand line is present in the DESC file, troff uses the following two commands.

txxx xxx is any sequence of characters terminated by a space or a newline (to be more precise, it is a se-

quence of glyphs which are accessed with the corresponding characters); the first character should

be printed at the current position, the current horizontal position should be increased by the width

of the first character, and so on for each character. The width of the glyph is that given in the font

file, appropriately scaled for the current point size, and rounded so that it is a multiple of the hori-

zontal resolution. Special characters cannot be printed using this command.

un xxx This is same as the t command except that after printing each character, the current horizontal po-

sition is increased by the sum of the width of that character and n.

Note that single characters can have the eighth bit set, as can the names of fonts and special characters.

The names of glyphs and fonts can be of arbitrary length; drivers should not assume that they are only two

characters long.

When a glyph is to be printed, that glyph is always in the current font. Unlike device-independent troff, it

is not necessary for drivers to search special fonts to find a glyph.

For color support, some new commands have been added:

mc cyan magenta yellow

md
mg gray

mk cyan magenta yellow black

mr red green blue

Set the color components of the current drawing color, using various color schemes. md resets the

drawing color to the default value. The arguments are integers in the range 0 to 65536.

The x device control command has been extended.

x u n If n is 1, start underlining of spaces. If n is 0, stop underlining of spaces. This is needed for the

cu request in nroff mode and is ignored otherwise.

Drawing Commands
The D drawing command has been extended. These extensions are not used by GNU pic if the −n option is

given.

Df n\n Set the shade of gray to be used for filling solid objects to n; n must be an integer between 0 and

1000, where 0 corresponds solid white and 1000 to solid black, and values in between correspond

to intermediate shades of gray. This applies only to solid circles, solid ellipses and solid polygons.

By default, a level of 1000 is used. Whatever color a solid object has, it should completely ob-

scure everything beneath it. A value greater than 1000 or less than 0 can also be used: this means

fill with the shade of gray that is currently being used for lines and text. Normally this is black,

but some drivers may provide a way of changing this.

The corresponding \D’f. . .’ command shouldn’t be used since its argument is always rounded to an

integer multiple of the horizontal resolution which can lead to surprising results.

DC d\n Draw a solid circle with a diameter of d with the leftmost point at the current position.

DE dx dy\n

Draw a solid ellipse with a horizontal diameter of dx and a vertical diameter of dy with the left-

most point at the current position.

Dp dx1 dy1 dx2 dy2
. . . .lf 3501

dxn dyn\n Draw a polygon with, for i = 1, . . . , n + 1, the i-th vertex at the current position

+
i−1

j=1
Σ(dx j , dy j). At the moment, GNU pic only uses this command to generate triangles and rectan-

gles.

groff 1.22.4 21 March 2020 19

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

DP dx1 dy1 dx2 dy2
. . . .lf 3513

dxn dyn\n Like Dp but draw a solid rather than outlined polygon.

Dt n\n Set the current line thickness to n machine units. Traditionally Unix troff drivers use a line thick-

ness proportional to the current point size; drivers should continue to do this if no Dt command

has been given, or if a Dt command has been given with a negative value of n. A zero value of n

selects the smallest available line thickness.

A difficulty arises in how the current position should be changed after the execution of these commands.

This is not of great importance since the code generated by GNU pic does not depend on this. Given a

drawing command of the form

\D’c x1 y1 x2 y2
. . . .lf 3546 xn yn’

where c is not one of c, e, l, a, or ~, Unix troff treats each of the xi as a horizontal quantity, and each of the

yi as a vertical quantity and assumes that the width of the drawn object is
n

i=1
Σ xi , and that the height is

n

i=1
Σ yi .

(The assumption about the height can be seen by examining the st and sb registers after using such a

D command in a \w escape sequence). This rule also holds for all the original drawing commands with the

exception of De. For the sake of compatibility GNU troff also follows this rule, even though it produces an

ugly result in the case of the Dt and Df, and, to a lesser extent, DE commands. Thus after executing a

D command of the form

Dc x1 y1 x2 y2
. . . .lf 3590 xn yn\n

the current position should be increased by (
n

i=1
Σ xi ,

n

i=1
Σ yi).

Another set of extensions is

DFc cyan magenta yellow\n

DFd\n

DFg gray\n

DFk cyan magenta yellow black\n

DFr red green blue\n

Set the color components of the filling color similar to the m commands above.

The current position isn’t changed by those colour commands (contrary to Df).

Device Control Commands
There is a continuation convention which permits the argument to the x X command to contain newlines:

when outputting the argument to the x X command, GNU troff follows each newline in the argument with a

+ character (as usual, it terminates the entire argument with a newline); thus if the line after the line con-

taining the x X command starts with +, then the newline ending the line containing the x X command

should be treated as part of the argument to the x X command, the + should be ignored, and the part of the

line following the + should be treated like the part of the line following the x X command.

The first three output commands are guaranteed to be:

x T device

x res n h v

x init

INCOMPATIBILITIES
In spite of the many extensions, groff has retained compatibility to classical troff to a large degree. For the

cases where the extensions lead to collisions, a special compatibility mode with the restricted, old function-

ality was created for groff.

Groff Language
groff provides a compatibility mode that allows the processing of roff code written for classical troff or

for other implementations of roff in a consistent way.

Compatibility mode can be turned on with the −C command-line option, and turned on or off with the .cp
request. The number register \n(.C is 1 if compatibility mode is on, 0 otherwise.

groff 1.22.4 21 March 2020 20

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

This became necessary because the GNU concept for long names causes some incompatibilities. Classical

troff interprets

.dsabcd

as defining a string ab with contents cd. In groff mode, this is considered as a call of a macro named

dsabcd.

Also classical troff interprets *[or \n[as references to a string or number register called [while groff

takes this as the start of a long name.

In compatibility mode, groff interprets these things in the traditional way; so long names are not recog-

nized.

On the other hand, groff in GNU native mode does not allow to use the single-character escapes \\ (back-

slash), \| (vertical bar), \^ (caret), \& (ampersand), \{ (opening brace), \} (closing brace), ‘\ ’ (space), \' (sin-

gle quote), \` (backquote), \− (minus), _ (underline), \! (bang), \% (percent), and \c (character c) in names

of strings, macros, diversions, number registers, fonts or environments, whereas classical troff does.

The \A escape sequence can be helpful in avoiding these escape sequences in names.

Fractional point sizes cause one noteworthy incompatibility. In classical troff , the ps request ignores scale

indicators and so

.ps 10u

sets the point size to 10 points, whereas in groff native mode the point size is set to 10 scaled points.

In groff , there is a fundamental difference between unformatted input characters, and formatted output

characters (glyphs). Everything that affects how a glyph is output is stored with the glyph; once a glyph

has been constructed it is unaffected by any subsequent requests that are executed, including the bd, cs, tkf,
tr, or fp requests.

Normally glyphs are constructed from input characters at the moment immediately before the glyph is

added to the current output line. Macros, diversions and strings are all, in fact, the same type of object;

they contain lists of input characters and glyphs in any combination.

Special characters can be both; before being added to the output, they act as input entities, afterwards they

denote glyphs.

A glyph does not behave like an input character for the purposes of macro processing; it does not inherit

any of the special properties that the input character from which it was constructed might have had. The

following example makes things clearer.

.di x

\\\\

.br

.di

.x

With GNU troff this is printed as \\. So each pair of input backslashes ‘\\’ is turned into a single output

backslash glyph ‘\’ and the resulting output backslashes are not interpreted as escape characters when they

are reread.

Classical troff would interpret them as escape characters when they were reread and would end up printing

a single backslash ‘\’.

In GNU, the correct way to get a printable version of the backslash character ’\’ is the \(rs escape sequence,

but classical troff does not provide a clean feature for getting a non-syntactical backslash. A close method

is the printable version of the current escape character using the \e escape sequence; this works if the cur-

rent escape character is not redefined. It works in both GNU mode and compatibility mode, while dirty

tricks like specifying a sequence of multiple backslashes do not work reliably; for the different handling in

diversions, macro definitions, or text mode quickly leads to a confusion about the necessary number of

backslashes.

groff 1.22.4 21 March 2020 21

GROFF_DIFF(7) Miscellaneous Information Manual GROFF_DIFF(7)

To store an escape sequence in a diversion that is interpreted when the diversion is reread, either the tradi-

tional \! transparent output facility or the new \? escape sequence can be used.

Intermediate Output
The groff intermediate output format is in a state of evolution. So far it has some incompatibilities, but it is

intended to establish a full compatibility to the classical troff output format. Actually the following incom-

patibilities exist:

• The positioning after the drawing of the polygons conflicts with the classical definition.

• The intermediate output cannot be rescaled to other devices as classical ‘device-independent’ troff did.

AUTHORS
This document was written by James Clark 〈jjc@jclark.com〉 and modified by Werner Lemberg 〈wl@

gnu.org〉 and Bernd Warken 〈groff−bernd.warken−72@web.de〉 .

SEE ALSO
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. You can browse it interactively with “info groff”.

groff(1)

A list of all documentation around groff .

groff(7)

A description of the groff language, including a short, but complete reference of all predefined re-

quests, registers, and escapes of plain groff . From the command line, this is called using

man 7 groff

roff(7) A survey of roff systems, including pointers to further historical documentation.

[CSTR #54]

The Nroff/Troff User’s Manual by J. F. Ossanna of 1976 in the revision of Brian Kernighan of

1992, being the classical troff documentation 〈http://cm.bell−labs.com/cm/cs/cstr/54.ps.gz〉 .

groff 1.22.4 21 March 2020 22

