
GROFF(7) Miscellaneous Information Manual GROFF(7)

NAME
groff − a short reference for the GNU roff language

DESCRIPTION
The name groff stands for GNU roff and is the free implementation of the roff type-setting system. See

roff(7) for a survey and the background of the groff system.

This document provides only short descriptions of roff language elements. Groff: The GNU Implementa-

tion of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff manual, and is written in Tex-

info. You can browse it interactively with “info groff”.

Historically, the roff language was called troff . groff is compatible with the classical system and provides

proper extensions. So in GNU, the terms roff , troff , and groff language could be used as synonyms. How-

ev er troff slightly tends to refer more to the classical aspects, whereas groff emphasizes the GNU exten-

sions, and roff is the general term for the language.

The general syntax for writing groff documents is relatively easy, but writing extensions to the roff lan-

guage can be a bit harder.

The roff language is line-oriented. There are only two kinds of lines, control lines and text lines. The con-

trol lines start with a control character, by default a period “.” or a single quote “'”; all other lines are text

lines.

Control lines represent commands, optionally with arguments. They hav e the following syntax. The lead-

ing control character can be followed by a command name; arguments, if any, are separated by spaces (but

not tab characters) from the command name and among themselves, for example,

.command_name arg1 arg2

For indentation, any number of space or tab characters can be inserted between the leading control charac-

ter and the command name, but the control character must be on the first position of the line.

Text lines represent the parts that is printed. They can be modified by escape sequences, which are recog-

nized by a leading backslash ‘\’. These are in-line or even in-word formatting elements or functions.

Some of these take arguments separated by single quotes “'”, others are regulated by a length encoding in-

troduced by an open parenthesis ‘(’ or enclosed in brackets ‘[’ and ‘]’.

The roff language provides flexible instruments for writing language extension, such as macros. When in-

terpreting macro definitions, the roff system enters a special operating mode, called the copy mode.

The copy mode behaviour can be quite tricky, but there are some rules that ensure a safe usage.

1. Printable backslashes must be denoted as \e. To be more precise, \e represents the current escape

character. To get a backslash glyph, use \(rs or \[rs].

2. Double all backslashes.

3. Begin all text lines with the special non-spacing character \&.

This does not produce the most efficient code, but it should work as a first measure. For better strategies,

see the groff Te xinfo manual and groff_tmac(5).

Reading roff source files is easier, just reduce all double backslashes to a single one in all macro definitions.

GROFF ELEMENTS
The roff language elements add formatting information to a text file. The fundamental elements are prede-

fined commands and variables that make roff a full-blown programming language.

There are two kinds of roff commands, possibly with arguments. Requests are written on a line of their

own starting with a dot ‘.’ or a “'”, whereas Escape sequences are in-line functions and in-word format-

ting elements starting with a backslash ‘\’.

The user can define her own formatting commands using the de request. These commands are called

macros, but they are used exactly like requests. Macro packages are pre-defined sets of macros written in

the groff language. A user’s possibilities to create escape sequences herself is very limited, only special

characters can be mapped.

groff 1.22.4 21 March 2020 1

GROFF(7) Miscellaneous Information Manual GROFF(7)

The groff language provides several kinds of variables with different interfaces. There are pre-defined vari-

ables, but the user can define her own variables as well.

String variables store character sequences. They are set with the ds request and retrieved by the * escape

sequences. Strings can have variables.

Register variables can store numerical values, numbers with a scale unit, and occasionally string-like ob-

jects. They are set with the nr request and retrieved by the \n escape sequences.

Environments allow the user to temporarily store global formatting parameters like line length, font size,

etc. for later reuse. This is done by the ev request.

Fonts are identified either by a name or by an internal number. The current font is chosen by the ft request

or by the \f escape sequences. Each device has special fonts, but the following fonts are available for all de-

vices. R is the standard font Roman. B is its bold counterpart. The italic font is called I and is available

ev erywhere, but on text devices it is displayed as an underlined Roman font. For the graphical output de-

vices, there exist constant-width pendants of these fonts, CR, CI, and CB. On text devices, all glyphs have

a constant width anyway.

Glyphs are visual representation forms of characters. In groff, the distinction between those two elements

is not always obvious (and a full discussion is beyond the scope of this man page). A first approximation is

that glyphs have a specific size and colour and are taken from a specific font; they can’t be modified any

more – characters are the input, and glyphs are the output. As soon as an output line has been generated, it

no longer contains characters but glyphs. In this man page, we use either ‘glyph’ or ‘character’, whatever is

more appropriate.

Moreover, there are some advanced roff elements. A diversion stores (formatted) information into a macro

for later usage. See groff_tmac(5) for more details. A trap is a positional condition like a certain number

of lines from page top or in a diversion or in the input. Some action can be prescribed to be run automati-

cally when the condition is met.

More detailed information and examples can be found in the groff Te xinfo manual.

CONTROL CHARACTERS
There is a small set of characters that have a special controlling task in certain conditions.

. A dot is only special at the beginning of a line or after the condition in the requests if, ie, el, and

while. There it is the control character that introduces a request (or macro). By using the cc re-

quest, the control character can be set to a different character, making the dot ‘.’ a non-special

character.

In all other positions, it just means a dot character. In text paragraphs, it is advantageous to start

each sentence at a line of its own.

' The single quote has two controlling tasks. At the beginning of a line and in the conditional re-

quests it is the non-breaking control character. That means that it introduces a request like the dot,

but with the additional property that this request doesn’t cause a linebreak. By using the c2 re-

quest, the non-break control character can be set to a different character.

As a second task, it is the most commonly used argument separator in some functional escape se-

quences (but any pair of characters not part of the argument do work). In all other positions, it de-

notes the single quote or apostrophe character. Groff provides a printable representation with the

\(cq escape sequence.

" The double quote is used to enclose arguments in macros (but not in requests and strings). In the

ds and as requests, a leading double quote in the argument is stripped off, making everything else

afterwards the string to be defined (enabling leading whitespace). The escaped double quote \" in-

troduces a comment. Otherwise, it is not special. Groff provides a printable representation with

the \(dq escape sequence.

\ The backslash usually introduces an escape sequence (this can be changed with the ec request). A

printed version of the escape character is the \e escape; a backslash glyph can be obtained by \(rs.

groff 1.22.4 21 March 2020 2

GROFF(7) Miscellaneous Information Manual GROFF(7)

(The open parenthesis is only special in escape sequences when introducing an escape name or ar-

gument consisting of exactly two characters. In groff, this behaviour can be replaced by the []
construct.

[The opening bracket is only special in groff escape sequences; there it is used to introduce a long

escape name or long escape argument. Otherwise, it is non-special, e.g. in macro calls.

] The closing bracket is only special in groff escape sequences; there it terminates a long escape

name or long escape argument. Otherwise, it is non-special.

space Space characters are only functional characters. They separate the arguments in requests, macros,

and strings, and the words in text lines. They are subject to groff’s horizontal spacing calculations.

To get a defined space width, escape sequences like ‘\ ’ (this is the escape character followed by

a space), \|, \ˆ, or \h should be used.

newline

In text paragraphs, newlines mostly behave like space characters. Continuation lines can be speci-

fied by an escaped newline, i.e., by specifying a backslash ‘\’ as the last character of a line.

tab If a tab character occurs during text the interpreter makes a horizontal jump to the next pre-defined

tab position. There is a sophisticated interface for handling tab positions.

NUMERICAL EXPRESSIONS
A numerical value is a signed or unsigned integer or float with or without an appended scaling indicator.

A scaling indicator is a one-character abbreviation for a unit of measurement. A number followed by a

scaling indicator signifies a size value. By default, numerical values do not have a scaling indicator, i.e.,

they are normal numbers.

The roff language defines the following scaling indicators.

c centimeter

i inch

P pica = 1/6 inch

p point = 1/72 inch

m em = the font size in points (approx. width of letter ‘m’)

M 100 th of an em

n en = em/2

u Basic unit for actual output device

v Vertical line space in basic units

s scaled point = 1/sizescale of a point (defined in font DESC file)

f Scale by 65536.

Numerical expressions are combinations of the numerical values defined above with the following arith-

metical operators already defined in classical troff.

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulo

= Equals

== Equals

< Less than

> Greater than

<= Less or equal

>= Greater or equal

& Logical and

: Logical or

! Logical not

groff 1.22.4 21 March 2020 3

GROFF(7) Miscellaneous Information Manual GROFF(7)

(Grouping of expressions

) Close current grouping

Moreover, groff added the following operators for numerical expressions:

e1>?e2 The maximum of e1 and e2.

e1<?e2 The minimum of e1 and e2.

(c;e) Evaluate e using c as the default scaling indicator.

For details see the groff Te xinfo manual.

CONDITIONS
Conditions occur in tests raised by the if, ie, and the while requests. The following table characterizes the

different types of conditions.

N A numerical expression N yields true if its value is greater than 0.

!N True if the value of N is 0 (see below).

's1's2' True if string s1 is identical to string s2.

!'s1's2' True if string s1 is not identical to string s2 (see below).

cch True if there is a glyph ch available.

dname True if there is a string, macro, diversion, or request called name.

e Current page number is even.

o Current page number is odd.

mname True if there is a color called name.

n Formatter is nroff.
rreg True if there is a register named reg.

t Formatter is troff.
F font True if there exists a font named font.

Sstyle True if a style named style has been registered.

Note that the ! operator may only appear at the beginning of an expression, and negates the entire expres-

sion. This maintains bug-compatibility with AT&T troff .

REQUESTS
This section provides a short reference for the predefined requests. In groff, request, macro, and string

names can be arbitrarily long. No bracketing or marking of long names is needed.

Most requests take one or more arguments. The arguments are separated by space characters (no tabs!);

there is no inherent limit for their length or number.

Some requests have optional arguments with a different behaviour. Not all of these details are outlined

here. Refer to the groff Te xinfo manual and groff_diff(7) for all details.

In the following request specifications, most argument names were chosen to be descriptive. Only the fol-

lowing denotations need clarification.

c denotes a single character.

font a font either specified as a font name or a font number.

anything all characters up to the end of the line or within \{ and \}.

n is a numerical expression that evaluates to an integer value.

N is an arbitrary numerical expression, signed or unsigned.

±N has three meanings depending on its sign, described below.

If an expression defined as ±N starts with a ‘+’ sign the resulting value of the expression is added to an al-

ready existing value inherent to the related request, e.g. adding to a number register. If the expression starts

with a ‘-’ the value of the expression is subtracted from the request value.

Without a sign, N replaces the existing value directly. To assign a negative number either prepend 0 or en-

close the negative number in parentheses.

Request Short Reference
. Empty line, ignored. Useful for structuring documents.

groff 1.22.4 21 March 2020 4

GROFF(7) Miscellaneous Information Manual GROFF(7)

.\" anything

Complete line is a comment.

.ab string

Print string on standard error, exit program.

.ad Begin line adjustment for output lines in current adjust mode.

.ad c Start line adjustment in mode c (c =l,r,c,b,n).

.af register c

Assign format c to register (c =l,i,I,a,A).

.aln alias register

Create alias name for register.

.als alias object

Create alias name for request, string, macro, or diversion object.

.am macro

Append to macro until .. is encountered.

.am macro end

Append to macro until .end is called.

.am1 macro

Same as .am but with compatibility mode switched off during macro expansion.

.am1 macro end

Same as .am but with compatibility mode switched off during macro expansion.

.ami macro

Append to a macro whose name is contained in the string register macro until .. is encountered.

.ami macro end

Append to a macro indirectly. macro and end are string registers whose contents are interpo-

lated for the macro name and the end macro, respectively.

.ami1 macro

Same as .ami but with compatibility mode switched off during macro expansion.

.ami1 macro end

Same as .ami but with compatibility mode switched off during macro expansion.

.as stringvar anything

Append anything to stringvar.

.as1 stringvar anything

Same as .as but with compatibility mode switched off during string expansion.

.asciify diversion

Unformat ASCII characters, spaces, and some escape sequences in diversion.

.backtrace
Print a backtrace of the input on stderr.

.bd font N

Embolden font by N−1 units.

.bd S font N

Embolden Special Font S when current font is font.

.blm Unset the blank line macro.

.blm macro

Set the blank line macro to macro.

.box End current diversion.

.box macro

Divert to macro, omitting a partially filled line.

.boxa End current diversion.

.boxa macro

Divert and append to macro, omitting a partially filled line.

.bp Eject current page and begin new page.

.bp ±N Eject current page; next page number ±N .

.br Line break.

groff 1.22.4 21 March 2020 5

GROFF(7) Miscellaneous Information Manual GROFF(7)

.brp Break output line; adjust if applicable.

.break Break out of a while loop.

.c2 Reset no-break control character to “'”.

.c2 c Set no-break control character to c.

.cc Reset control character to ‘.’.

.cc c Set control character to c.

.ce Center the next input line.

.ce N Center following N input lines.

.cf filename

Copy contents of file filename unprocessed to stdout or to the diversion.

.cflags mode c1 c2 . . .

Treat characters c1, c2, . . . according to mode number.

.ch trap N

Change trap location to N .

.char c anything

Define entity c as string anything.

.chop object

Chop the last character off macro, string, or diversion object.

.class name c1 c2 . . .

Assign a set of characters, character ranges, or classes c1, c2, . . . to name.

.close stream

Close the stream.

.color Enable colors.

.color N

If N is zero disable colors, otherwise enable them.

.composite from to

Map glyph name from to glyph name to while constructing a composite glyph name.

.continue
Finish the current iteration of a while loop.

.cp Enable compatibility mode.

.cp N If N is zero disable compatibility mode, otherwise enable it.

.cs font N M

Set constant character width mode for font to N /36 ems with em M .

.cu N Continuous underline in nroff, like .ul in troff.

.da End current diversion.

.da macro

Divert and append to macro.

.de macro

Define or redefine macro until .. is encountered.

.de macro end

Define or redefine macro until .end is called.

.de1 macro

Same as .de but with compatibility mode switched off during macro expansion.

.de1 macro end

Same as .de but with compatibility mode switched off during macro expansion.

.defcolor color scheme component

Define or redefine a color with name color. scheme can be rgb, cym, cymk, gray, or grey.

component can be single components specified as fractions in the range 0 to 1 (default scaling

indicator f), as a string of two-digit hexadecimal color components with a leading #, or as a

string of four-digit hexadecimal components with two leading #. The color default can’t be re-

defined.

.dei macro

Define or redefine a macro whose name is contained in the string register macro until .. is en-

countered.

groff 1.22.4 21 March 2020 6

GROFF(7) Miscellaneous Information Manual GROFF(7)

.dei macro end

Define or redefine a macro indirectly. macro and end are string registers whose contents are

interpolated for the macro name and the end macro, respectively.

.dei1 macro

Same as .dei but with compatibility mode switched off during macro expansion.

.dei1 macro end

Same as .dei but with compatibility mode switched off during macro expansion.

.device anything

Write anything to the intermediate output as a device control function.

.devicem name

Write contents of macro or string name uninterpreted to the intermediate output as a device

control function.

.di End current diversion.

.di macro

Divert to macro. See groff_tmac(5) for more details.

.do name

Interpret .name with compatibility mode disabled.

.ds stringvar anything

Set stringvar to anything.

.ds1 stringvar anything

Same as .ds but with compatibility mode switched off during string expansion.

.dt N trap

Set diversion trap to position N (default scaling indicator v).

.ec Reset escape character to ‘\’.

.ec c Set escape character to c.

.ecr Restore escape character saved with .ecs.

.ecs Save current escape character.

.el anything

Else part for if-else (.ie) request.

.em macro

The macro is run after the end of input.

.eo Turn off escape character mechanism.

.ev Switch to previous environment and pop it off the stack.

.ev env Push down environment number or name env to the stack and switch to it.

.evc env Copy the contents of environment env to the current environment. No pushing or popping.

.ex Exit from roff processing.

.fam Return to previous font family.

.fam name

Set the current font family to name.

.fc Disable field mechanism.

.fc a Set field delimiter to a and pad glyph to space.

.fc a b Set field delimiter to a and pad glyph to b.

.fchar c anything

Define fallback character (or glyph) c as string anything.

.fcolor Set fill color to previous fill color.

.fcolor c

Set fill color to c.

.fi Fill output lines.

.fl Flush output buffer.

.fp n font

Mount font on position n.

.fp n internal external

Mount font with long external name to short internal name on position n.

groff 1.22.4 21 March 2020 7

GROFF(7) Miscellaneous Information Manual GROFF(7)

.fschar f c anything

Define fallback character (or glyph) c for font f as string anything.

.fspecial font

Reset list of special fonts for font to be empty.

.fspecial font s1 s2 . . .

When the current font is font, then the fonts s1, s2, . . . are special.

.ft Return to previous font. Same as \ or \.

.ft font Change to font name or number font; same as \f[font] escape sequence.

.ftr font1 font2

Translate font1 to font2.

.fzoom font

Don’t magnify font.

.fzoom font zoom

Set zoom factor for font (in multiples of 1/1000th).

.gcolor Set glyph color to previous glyph color.

.gcolor c

Set glyph color to c.

.hc Remove additional hyphenation indicator character.

.hc c Set up additional hyphenation indicator character c.

.hcode c1 code1 [c2 code2] . . .

Set the hyphenation code of character c1 to code1, that of c2 to code2, etc.

.hla lang

Set the current hyphenation language to lang.

.hlm n Set the maximum number of consecutive hyphenated lines to n.

.hpf file Read hyphenation patterns from file.

.hpfa file

Append hyphenation patterns from file.

.hpfcode a b c d . . .

Set input mapping for .hpf.
.hw words

List of words with exceptional hyphenation.

.hy N Switch to hyphenation mode N .

.hym n Set the hyphenation margin to n (default scaling indicator m).

.hys n Set the hyphenation space to n.

.ie cond anything

If cond then anything else goto .el.
.if cond anything

If cond then anything; otherwise do nothing.

.ig Ignore text until .. is encountered.

.ig end Ignore text until .end is called.

.in Change to previous indentation value.

.in ±N Change indentation according to ±N (default scaling indicator m).

.it N trap

Set an input-line count trap for the next N lines.

.itc N trap

Same as .it but don’t count lines interrupted with \c.

.kern Enable pairwise kerning.

.kern n If n is zero, disable pairwise kerning, otherwise enable it.

.lc Remove leader repetition glyph.

.lc c Set leader repetition glyph to c.

.length register anything

Write the length of the string anything to register.

groff 1.22.4 21 March 2020 8

GROFF(7) Miscellaneous Information Manual GROFF(7)

.linetabs
Enable line-tabs mode (i.e., calculate tab positions relative to output line).

.linetabs n

If n is zero, disable line-tabs mode, otherwise enable it.

.lf N Set input line number to N .

.lf N file

Set input line number to N and filename to file.

.lg N Ligature mode on if N>0.

.ll Change to previous line length.

.ll ±N Set line length according to ±N (default length 6.5i, default scaling indicator m).

.lsm Unset the leading spaces macro.

.lsm macro

Set the leading spaces macro to macro.

.ls Change to the previous value of additional intra-line skip.

.ls N Set additional intra-line skip value to N , i.e., N−1 blank lines are inserted after each text out-

put line.

.lt ±N Length of title (default scaling indicator m).

.mc Margin glyph off.

.mc c Print glyph c after each text line at actual distance from right margin.

.mc c N Set margin glyph to c and distance to N from right margin (default scaling indicator m).

.mk [register]

Mark current vertical position in register, or in an internal register used by .rt if no argument.

.mso file The same as .so except that file is searched in the tmac directories.

.na No output-line adjusting.

.ne Need a one-line vertical space.

.ne N Need N vertical space (default scaling indicator v).

.nf No filling or adjusting of output lines.

.nh No hyphenation.

.nm Number mode off.

.nm ±N [M [S [I]]]

In line number mode, set number, multiple, spacing, and indentation.

.nn Do not number next line.

.nn N Do not number next N lines.

.nop anything

Always process anything.

.nr register ±N [M]

Define or modify register using ±N with auto-increment M .

.nroff Make the built-in conditions n true and t false.

.ns Turn on no-space mode.

.nx Immediately jump to end of current file.

.nx filename

Immediately continue processing with file file.

.open stream filename

Open filename for writing and associate the stream named stream with it.

.opena stream filename

Like .open but append to it.

.os Output vertical distance that was saved by the sv request.

.output string

Emit string directly to intermediate output, allowing leading whitespace if string starts with "
(which is stripped off).

.pc Reset page number character to ‘%’.

.pc c Page number character.

.pev Print the current environment and each defined environment state to stderr.

groff 1.22.4 21 March 2020 9

GROFF(7) Miscellaneous Information Manual GROFF(7)

.pi program

Pipe output to program (nroff only).

.pl Set page length to default 11i. The current page length is stored in register .p.

.pl ±N Change page length to ±N (default scaling indicator v).

.pm Print macro names and sizes (number of blocks of 128 bytes).

.pm t Print only total of sizes of macros (number of 128 bytes blocks).

.pn ±N Next page number N .

.pnr Print the names and contents of all currently defined number registers on stderr.

.po Change to previous page offset. The current page offset is available in register .o.

.po ±N Page offset N .

.ps Return to previous point size.

.ps ±N Point size; same as \s[±N].

.psbb filename

Get the bounding box of a PostScript image filename.

.pso command

This behaves like the so request except that input comes from the standard output of command .

.ptr Print the names and positions of all traps (not including input line traps and diversion traps) on

stderr.

.pvs Change to previous post-vertical line spacing.

.pvs ±N Change post-vertical line spacing according to ±N (default scaling indicator p).

.rchar c1 c2 . . .

Remove the definitions of entities c1, c2, . . .

.rd prompt

Read insertion.

.return Return from a macro.

.return anything

Return twice, namely from the macro at the current level and from the macro one level higher.

.rfschar f c1 c2 . . .

Remove the definitions of entities c1, c2, . . . for font f .

.rj n Right justify the next n input lines.

.rm name

Remove request, macro, diversion, or string name.

.rn old new

Rename request, macro, diversion, or string old to new.

.rnn reg1 reg2

Rename register reg1 to reg2.

.rr register

Remove register.

.rs Restore spacing; turn no-space mode off.

.rt Return (upward only) to vertical position marked by .mk on the current page.

.rt ±N Return (upward only) to specified distance from the top of the page (default scaling indica-

tor v).

.schar c anything

Define global fallback character (or glyph) c as string anything.

.shc Reset soft hyphen glyph to \(hy.

.shc c Set the soft hyphen glyph to c.

.shift n

In a macro, shift the arguments by n positions.

.sizes s1 s2 . . . sn [0]

Set available font sizes similar to the sizes command in a DESC file.

.so filename

Include source file.

.sp Skip one line vertically.

groff 1.22.4 21 March 2020 10

GROFF(7) Miscellaneous Information Manual GROFF(7)

.sp N Space vertical distance N up or down according to sign of N (default scaling indicator v).

.special
Reset global list of special fonts to be empty.

.special s1 s2 . . .

Fonts s1, s2, etc. are special and are searched for glyphs not in the current font.

.spreadwarn
Toggle the spread warning on and off without changing its value.

.spreadwarn limit

Emit a warning if each space in an output line is widened by limit or more (default scaling in-

dicator m).

.ss N Set space glyph size to N /12 of the space width in the current font.

.ss N M Set space glyph size to N /12 and sentence space size set to M /12 of the space width in the cur-

rent font.

.sty n style

Associate style with font position n.

.substring xx n1 n2

Replace the string named xx with the substring defined by the indices n1 and n2.

.sv Save 1 v of vertical space.

.sv N Save the vertical distance N for later output with os request (default scaling indicator v).

.sy command-line

Execute program command-line.

.ta T N Set tabs after every position that is a multiple of N (default scaling indicator m).

.ta n1 n2 . . . nn T r1 r2 . . . rn

Set tabs at positions n1, n2, . . ., nn, then set tabs at nn+m×rn+r1 through nn+m×rn+rn, where

m increments from 0, 1, 2, . . . to infinity.

.tc Remove tab repetition glyph.

.tc c Set tab repetition glyph to c.

.ti ±N Temporary indent next line (default scaling indicator m).

.tkf font s1 n1 s2 n2

Enable track kerning for font.

.tl ’left’center’right’
Three-part title.

.tm anything

Print anything on stderr.

.tm1 anything

Print anything on stderr, allowing leading whitespace if anything starts with " (which is

stripped off).

.tmc anything

Similar to .tm1 without emitting a final newline.

.tr abcd. . .

Translate a to b, c to d , etc. on output.

.trf filename

Transparently output the contents of file filename.

.trin abcd. . .

This is the same as the tr request except that the asciify request uses the character code (if any)

before the character translation.

.trnt abcd. . .

This is the same as the tr request except that the translations do not apply to text that is trans-

parently throughput into a diversion with \!.
.troff Make the built-in conditions t true and n false.

.uf font Set underline font to font (to be switched to by .ul).

.ul N Underline (italicize in troff) N input lines.

groff 1.22.4 21 March 2020 11

GROFF(7) Miscellaneous Information Manual GROFF(7)

.unformat diversion

Unformat space characters and tabs in diversion, preserving font information.

.vpt n Enable vertical position traps if n is non-zero, disable them otherwise.

.vs Change to previous vertical base line spacing.

.vs ±N Set vertical base line spacing to ±N (default scaling indicator p).

.warn n Set warnings code to n.

.warnscale si

Set scaling indicator used in warnings to si.

.wh N Remove (first) trap at position N .

.wh N trap

Set location trap; negative means from page bottom.

.while cond anything

While condition cond is true, accept anything as input.

.write stream anything

Write anything to the stream named stream.

.writec stream anything

Similar to .write without emitting a final newline.

.writem stream xx

Write contents of macro or string xx to the stream named stream.

Besides these standard groff requests, there might be further macro calls. They can originate from a macro

package (see roff(7) for an overview) or from a preprocessor.

Preprocessor macros are easy to recognize. They enclose their code between a pair of characteristic

macros.

preprocessor start macro end macro

chem .cstart .cend
eqn .EQ .EN
grap .G1 .G2
grn .GS .GE
ideal .IS .IE

.IF
pic .PS .PE
refer .R1 .R2
soelim none none

tbl .TS .TE

glilypond .lilypond start .lilypond stop
gperl .Perl start .Perl stop
gpinyin .pinyin start .pinyin stop

Note that the ‘ideal’ preprocessor is not available in groff yet.

ESCAPE SEQUENCES
Escape sequences are in-line language elements usually introduced by a backslash ‘\’ and followed by an

escape name and sometimes by a required argument. Input processing is continued directly after the es-

caped character or the argument (without an intervening separation character). So there must be a way to

determine the end of the escape name and the end of the argument.

This is done by enclosing names (escape name and arguments consisting of a variable name) by a pair of

brackets [name] and constant arguments (number expressions and characters) by apostrophes (ASCII 0x27)

like ’constant’.

There are abbreviations for short names. Tw o-character escape names can be specified by an opening

parenthesis like \(xy or *(xy without a closing counterpart. And all one-character names different from the

special characters ‘[’ and ‘(’ can even be specified without a marker, for example \nc or \$c.

Constant arguments of length 1 can omit the marker apostrophes, too, but there is no two-character ana-

logue.

groff 1.22.4 21 March 2020 12

GROFF(7) Miscellaneous Information Manual GROFF(7)

While one-character escape sequences are mainly used for in-line functions and system-related tasks, the

two-letter names following the \(construct are glyphs predefined by the roff system; these are called ‘Spe-

cial Characters’ in the classical documentation. Escapes sequences of the form \[name] denote glyphs

too.

Single-Character Escapes
\" Start of a comment. Everything up to the end of the line is ignored.

\# Everything up to and including the next newline is ignored. This is interpreted in copy mode.

This is like \" except that the terminating newline is ignored as well.

*s The string stored in the string variable with one-character name s.

*(st The string stored in the string variable with two-character name st.

*[string]
The string stored in the string variable with name string (with arbitrary length).

*[stringvar arg1 arg2 . . .]
The string stored in the string variable with arbitrarily long name stringvar, taking arg1, arg2, . . .

as arguments.

\$0 The name by which the current macro was invoked. The als request can make a macro have more

than one name.

\$x Macro or string argument with one-digit number x in the range 1 to 9.

\$(xy Macro or string argument with two-digit number xy (larger than zero).

\$[nexp]
Macro or string argument with number nexp, where nexp is a numerical expression evaluating to

an integer ≥1.

\$* In a macro or string, the concatenation of all the arguments separated by spaces.

\$@ In a macro or string, the concatenation of all the arguments with each surrounded by double

quotes, and separated by spaces.

\$ˆ In a macro, the representation of all parameters as if they were an argument to the ds request.

\\ reduces to a single backslash; useful to delay its interpretation as escape character in copy mode.

For a printable backslash, use \e, or even better \[rs], to be independent from the current escape

character.

\´ The acute accent ´; same as \(aa. Unescaped: apostrophe, right quotation mark, single quote

(ASCII 0x27).

\` The grave accent `; same as \(ga. Unescaped: left quote, backquote (ASCII 0x60).

\− The − (minus) sign in the current font.

_ The same as \(ul, the underline character.

\. The same as a dot (‘.’). Necessary in nested macro definitions so that ‘\\..’ expands to ‘..’.

\% Default optional hyphenation character.

\! Transparent line indicator.

\?anything?
In a diversion, this transparently embeds anything in the diversion. anything is read in copy mode.

See also the escape sequences \! and \?.

\space Unpaddable space size space glyph (no line break).

\0 Digit-width space.

\| 1/6 em narrow space glyph; zero width in nroff.

\ˆ 1/12 em half-narrow space glyph; zero width in nroff.

\& Non-printable, zero-width glyph.

\) Like \& except that it behaves like a glyph declared with the cflags request to be transparent for

the purposes of end-of-sentence recognition.

\/ Increases the width of the preceding glyph so that the spacing between that glyph and the follow-

ing glyph is correct if the following glyph is a roman glyph.

\, Modifies the spacing of the following glyph so that the spacing between that glyph and the preced-

ing glyph is correct if the preceding glyph is a roman glyph.

\˜ Unbreakable space that stretches like a normal inter-word space when a line is adjusted.

\: Inserts a zero-width break point (similar to \% but without a soft hyphen character).

groff 1.22.4 21 March 2020 13

GROFF(7) Miscellaneous Information Manual GROFF(7)

\newline

Ignored newline, for continuation lines.

\{ Begin conditional input.

\} End conditional input.

\(sc A glyph with two-character name sc; see section “Special Characters” below.

\[name]
A glyph with name name (of arbitrary length).

\[comp1 comp2 . . .]
A composite glyph with components comp1, comp2, . . .

\a Non-interpreted leader character.

\A’anything’
If anything is acceptable as a name of a string, macro, diversion, register, environment or font it

expands to 1, and to 0 otherwise.

\b’abc. . .’
Bracket building function.

\B’anything’
If anything is acceptable as a valid numeric expression it expands to 1, and to 0 otherwise.

\c Continue output line at next input line. Anything after this escape on the same line is ignored ex-

cept \R (which works as usual). Anything before \c on the same line is appended to the current

partial output line. The next non-command line after a line interrupted with \c counts as a new

input line.

\C’glyph’
The glyph called glyph; same as \[glyph], but compatible to other roff versions.

\d Forward (down) 1/2 em (1/2 line in nroff).

\D’charseq’
Draw a graphical element defined by the characters in charseq; see the groff Te xinfo manual for

details.

\e Printable version of the current escape character.

\E Equivalent to an escape character, but is not interpreted in copy mode.

\fF Change to font with one-character name or one-digit number F .

\fP Switch back to previous font.

\f(fo Change to font with two-character name or two-digit number fo.

\f[font]
Change to font with arbitrarily long name or number expression font.

\f[] Switch back to previous font.

\F f Change to font family with one-character name f .

\F(fm Change to font family with two-character name fm.

\F[fam]
Change to font family with arbitrarily long name fam.

\F[] Switch back to previous font family.

\gr Return format of register with one-character name r suitable for af request.

\g(rg Return format of register with two-character name rg suitable for af request.

\g[reg]
Return format of register with arbitrarily long name reg suitable for af request.

\h’N’
Local horizontal motion; move right N (left if negative).

\H’N’
Set height of current font to N .

\kr Mark horizontal input place in one-character register r.

\k(rg Mark horizontal input place in two-character register rg.

\k[reg]
Mark horizontal input place in register with arbitrarily long name reg.

groff 1.22.4 21 March 2020 14

GROFF(7) Miscellaneous Information Manual GROFF(7)

\l’Nc’
Horizontal line drawing function (optionally using character c).

\L’Nc’
Vertical line drawing function (optionally using character c).

\mc Change to color with one-character name c.

\m(cl Change to color with two-character name cl.

\m[color]
Change to color with arbitrarily long name color.

\m[] Switch back to previous color.

\Mc Change filling color for closed drawn objects to color with one-character name c.

\M(cl Change filling color for closed drawn objects to color with two-character name cl.

\M[color]
Change filling color for closed drawn objects to color with arbitrarily long name color.

\M[] Switch to previous fill color.

\nr The numerical value stored in the register variable with the one-character name r.

\n(re The numerical value stored in the register variable with the two-character name re.

\n[reg]
The numerical value stored in the register variable with arbitrarily long name reg.

\N’n’ Typeset the glyph with index n in the current font. No special fonts are searched. Useful for

adding (named) entities to a document using the char request and friends.

\o’abc. . .’
Overstrike glyphs a, b, c, etc.

\O0 Disable glyph output. Mainly for internal use.

\O1 Enable glyph output. Mainly for internal use.

\p Break output line at next word boundary; adjust if applicable.

\r Reverse 1 em vertical motion (reverse line in nroff).

\R’name ±n’
The same as .nr name ±n.

\s±N Set/increase/decrease the point size to/by N scaled points; N is a one-digit number in the range 1

to 9. Same as ps request.

\s(±N

\s±(N

Set/increase/decrease the point size to/by N scaled points; N is a two-digit number ≥1. Same as

ps request.

\s[±N]
\s±[N]
\s’±N’
\s±’N’

Set/increase/decrease the point size to/by N scaled points. Same as ps request.

\S’N’
Slant output by N degrees.

\t Non-interpreted horizontal tab.

\u Reverse (up) 1/2 em vertical motion (1/2 line in nroff).

\v’N’
Local vertical motion; move down N (up if negative).

\Ve The contents of the environment variable with one-character name e.

\V(ev The contents of the environment variable with two-character name ev.

\V[env]
The contents of the environment variable with arbitrarily long name env.

\w’string’
The width of the glyph sequence string.

\x’N’
Extra line-space function (negative before, positive after).

groff 1.22.4 21 March 2020 15

GROFF(7) Miscellaneous Information Manual GROFF(7)

\X’string’
Output string as device control function.

\Yn Output string variable or macro with one-character name n uninterpreted as device control func-

tion.

\Y(nm Output string variable or macro with two-character name nm uninterpreted as device control func-

tion.

\Y[name]
Output string variable or macro with arbitrarily long name name uninterpreted as device control

function.

\zc Print c with zero width (without spacing).

\Z’anything’
Print anything and then restore the horizontal and vertical position; anything may not contain tabs

or leaders.

The escape sequences \e, \., \", \$, *, \a, \n, \t, \g, and \newline are interpreted in copy mode.

Escape sequences starting with \(or \[do not represent single character escape sequences, but introduce es-

cape names with two or more characters.

If a backslash is followed by a character that does not constitute a defined escape sequence, the backslash is

silently ignored and the character maps to itself.

Special Characters
[Note: ‘Special Characters’ is a misnomer; those entities are (output) glyphs, not (input) characters.]

Common special characters are predefined by escape sequences of the form \(xy with characters x and y.

In groff , it is also possible to use the writing \[xy] as well.

Some of these special characters exist in the usual font while most of them are only available in the special

font. Below you can see a small selection of the most important glyphs; a complete list can be found in

groff_char(7).

\(Do Dollar $
\(Eu Euro €
\(Po British pound sterling £
\(aq Apostrophe quote '
\(bu Bullet sign •
\(co Copyright ©
\(cq Single closing quote (right) ’
\(ct Cent ¢
\(dd Double dagger ‡
\(de Degree °
\(dg Dagger †
\(dq Double quote (ASCII 34) "
\(em Em-dash —
\(en En-dash –
\(hy Hyphen -
\(lq Double quote left “
\(oq Single opening quote (left) ‘
\(rg Registered sign ®
\(rq Double quote right ”
\(rs Printable backslash character \
\(sc Section sign §
\(tm Trademark symbol ™
\(ul Underline character

\(== Identical ≡
\(>= Larger or equal ≥
\(<= Less or equal ≤

groff 1.22.4 21 March 2020 16

GROFF(7) Miscellaneous Information Manual GROFF(7)

\(!= Not equal ≠
\(-> Right arrow →
\(<- Left arrow ←
\(+- Plus-minus sign ±

Unicode Characters
The extended escape u allows the inclusion of all available Unicode characters into a roff file.

\[uxxxx]
u is the escape name. xxxx is a hexadecimal number of four hex digits, such as 0041 for the letter

A, thus \[u0041].

\[uyyyyy]
u is the escape name. yyyyy is a hexadecimal number of five hex digits, such as 2FA1A for a Chi-

nese-looking character from the Unicode block CJK Compatibility Ideographs Supplement, thus

\[u2FA1A].

The hexadecimal value indicates the corresponding Unicode code point for a character.

\[uhex1_hex2]
\[uhex1_hex2_hex3]

hex1, hex2, and hex3 are all Unicode hexadecimal codes (4 or 5 hex digits) that are used for over-

striking, e.g. \[u0041_0301] is A acute, which can also be specified as Á; see groff_char(7).

The availability of the Unicode characters depends on the font used. For text mode, the device −Tutf8 is

quite complete; for troff modes it might happen that some or many characters will not be displayed. Please

check your fonts.

Strings
Strings are defined by the ds request and can be retrieved by the * escape sequence.

Strings share their name space with macros. So strings and macros without arguments are roughly equiva-

lent; it is possible to call a string like a macro and vice versa, but this often leads to unpredictable results.

The following string is the only one predefined in groff.

*[.T] The name of the current output device as specified by the −T command-line option.

REGISTERS
Registers are variables that store a value. In groff, most registers store numerical values (see section “Nu-

merical Expressions” above), but some can also hold a string value.

Each register is given a name. Arbitrary registers can be defined and set with the nr request.

The value stored in a register can be retrieved by the escape sequences introduced by \n.

Most useful are predefined registers. In the following the notation name is used to refer to register name to

make clear that we speak about registers. Please keep in mind that the \n[] decoration is not part of the

register name.

Read-only Registers
The following registers have predefined values that should not be modified by the user (usually, registers

starting with a dot are read-only). Mostly, they provide information on the current settings or store results

from request calls.

\n[$$] The process ID of troff.
\n[.$] Number of arguments in the current macro or string.

\n[.a] Post-line extra line-space most recently utilized using \x.

\n[.A] Set to 1 in troff if option −A is used; always 1 in nroff.
\n[.b] The emboldening offset while .bd is active.

\n[.br] Within a macro, set to 1 if macro called with the ‘normal’ control character, and to 0 otherwise.

\n[.c] Current input line number.

\n[.C] 1 if compatibility mode is in effect, 0 otherwise.

groff 1.22.4 21 March 2020 17

GROFF(7) Miscellaneous Information Manual GROFF(7)

\n[.cdp] The depth of the last glyph added to the current environment. It is positive if the glyph extends

below the baseline.

\n[.ce] The number of lines remaining to be centered, as set by the ce request.

\n[.cht] The height of the last glyph added to the current environment. It is positive if the glyph ex-

tends above the baseline.

\n[.color]

1 if colors are enabled, 0 otherwise.

\n[.csk] The skew of the last glyph added to the current environment. The skew of a glyph is how far to

the right of the center of a glyph the center of an accent over that glyph should be placed.

\n[.d] Current vertical place in current diversion; equal to register nl.
\n[.ev] The name or number of the current environment (string-valued).

\n[.f] Current font number.

\n[.F] The name of the current input file (string-valued).

\n[.fam] The current font family (string-valued).

\n[.fn] The current (internal) real font name (string-valued).

\n[.fp] The number of the next free font position.

\n[.g] Always 1 in GNU troff. Macros should use it to test if running under groff.

\n[.h] Te xt base-line high-water mark on current page or diversion.

\n[.H] Number of basic units per horizontal unit of output device resolution.

\n[.height]

The current font height as set with \H.

\n[.hla] The current hyphenation language as set by the hla request.

\n[.hlc] The number of immediately preceding consecutive hyphenated lines.

\n[.hlm] The maximum allowed number of consecutive hyphenated lines, as set by the hlm request.

\n[.hy] The current hyphenation flags (as set by the hy request).

\n[.hym] The current hyphenation margin (as set by the hym request).

\n[.hys] The current hyphenation space (as set by the hys request).

\n[.i] Current indentation.

\n[.in] The indentation that applies to the current output line.

\n[.int] Positive if last output line contains \c.

\n[.j] The current adjustment mode. It can be stored and used to set adjustment. (n = 1, b = 1, l = 0,

r = 5, c = 3).

\n[.k] The current horizontal output position (relative to the current indentation).

\n[.kern] 1 if pairwise kerning is enabled, 0 otherwise.

\n[.l] Current line length.

\n[.L] The current line spacing setting as set by .ls.

\n[.lg] The current ligature mode (as set by the lg request).

\n[.linetabs]

The current line-tabs mode (as set by the linetabs request).

\n[.ll] The line length that applies to the current output line.

\n[.lt] The title length (as set by the lt request).

\n[.m] The current drawing color (string-valued).

\n[.M] The current background color (string-valued).

\n[.n] Length of text portion on previous output line.

\n[.ne] The amount of space that was needed in the last ne request that caused a trap to be sprung.

Useful in conjunction with register .trunc.

\n[.ns] 1 if in no-space mode, 0 otherwise.

\n[.o] Current page offset.

\n[.O] The suppression nesting level (see \O).

\n[.p] Current page length.

\n[.P] 1 if the current page is being printed, 0 otherwise (as determined by the −o command-line op-

tion).

\n[.pe] 1 during page ejection, 0 otherwise.

groff 1.22.4 21 March 2020 18

GROFF(7) Miscellaneous Information Manual GROFF(7)

\n[.pn] The number of the next page: either the value set by a pn request, or the number of the current

page plus 1.

\n[.ps] The current point size in scaled points.

\n[.psr] The last-requested point size in scaled points.

\n[.pvs] The current post-vertical line spacing.

\n[.R] The number of unused number registers. Always 10000 in GNU troff.

\n[.rj] The number of lines to be right-justified as set by the rj request.

\n[.s] Current point size as a decimal fraction.

\n[.slant]

The slant of the current font as set with \S.

\n[.sr] The last requested point size in points as a decimal fraction (string-valued).

\n[.ss] The value of the parameters set by the first argument of the ss request.

\n[.sss] The value of the parameters set by the second argument of the ss request.

\n[.sty] The current font style (string-valued).

\n[.t] Vertical distance to the next trap.

\n[.T] Set to 1 if option −T is used.

\n[.tabs] A string representation of the current tab settings suitable for use as an argument to the ta re-

quest.

\n[.trunc]

The amount of vertical space truncated by the most recently sprung vertical position trap, or, if

the trap was sprung by an ne request, minus the amount of vertical motion produced by .ne.

Useful in conjunction with the register .ne.

\n[.u] Equal to 1 in fill mode and 0 in no-fill mode.

\n[.U] Equal to 1 in safer mode and 0 in unsafe mode.

\n[.v] Current vertical line spacing.

\n[.V] Number of basic units per vertical unit of output device resolution.

\n[.vpt] 1 if vertical position traps are enabled, 0 otherwise.

\n[.w] Width of previous glyph.

\n[.warn] The sum of the number codes of the currently enabled warnings.

\n[.x] The major version number.

\n[.y] The minor version number.

\n[.Y] The revision number of groff.

\n[.z] Name of current diversion.

\n[.zoom] Zoom factor for current font (in multiples of 1/1000th; zero if no magnification).

Writable Registers
The following registers can be read and written by the user. They hav e predefined default values, but these

can be modified for customizing a document.

\n[%] Current page number.

\n[c.] Current input line number.

\n[ct] Character type (set by width function \w).

\n[dl] Maximal width of last completed diversion.

\n[dn] Height of last completed diversion.

\n[dw] Current day of week (1–7).

\n[dy] Current day of month (1–31).

\n[hours] The number of hours past midnight. Initialized at start-up.

\n[hp] Current horizontal position at input line.

\n[llx] Lower left x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).

\n[lly] Lower left y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).

\n[ln] Output line number.

\n[lsn] The number of leading spaces of an input line.

\n[lss] The horizontal space corresponding to the leading spaces of an input line.

\n[minutes]

The number of minutes after the hour. Initialized at start-up.

groff 1.22.4 21 March 2020 19

GROFF(7) Miscellaneous Information Manual GROFF(7)

\n[mo] Current month (1–12).

\n[nl] Vertical position of last printed text base-line.

\n[opmaxx]

\n[opmaxy]

\n[opminx]

\n[opminy]

These four registers mark the top left and bottom right hand corners of a box which encom-

passes all written glyphs. They are reset to −1 by \O0 or \O1.

\n[rsb] Like register sb, but takes account of the heights and depths of glyphs.

\n[rst] Like register st, but takes account of the heights and depths of glyphs.

\n[sb] Depth of string below base line (generated by width function \w).

\n[seconds]

The number of seconds after the minute. Initialized at start-up.

\n[skw] Right skip width from the center of the last glyph in the \w argument.

\n[slimit]

If greater than 0, the maximum number of objects on the input stack. If ≤0 there is no limit,

i.e., recursion can continue until virtual memory is exhausted.

\n[ssc] The amount of horizontal space (possibly negative) that should be added to the last glyph be-

fore a subscript (generated by width function \w).

\n[st] Height of string above base line (generated by width function \w).

\n[systat]

The return value of the system() function executed by the last sy request.

\n[urx] Upper right x-coordinate (in PostScript units) of a given PostScript image (set by .psbb).

\n[ury] Upper right y-coordinate (in PostScript units) of a given PostScript image (set by .psbb).

\n[year] The current year (year 2000 compliant).

\n[yr] Current year minus 1900. For Y2K compliance use register year instead.

HYPHENATION
The .hy request, given an integer argument, controls when hyphenation applies. The default value is 1,

which enables hyphenation almost everywhere (see below). Macro packages often override this default.

1 disables hyphenation only after the first and before the last character of a word.

2 disables hyphenation only of the last word on a page or column.

4 disables hyphenation only before the last two characters of a word.

8 disables hyphenation only after the first two characters of a word.

16 enables hyphenation before the last character of a word.

32 enables hyphenation after the first character of a word.

The values are additive. Some values cannot be used together because they contradict; for instance, 4

and 16; 8 and 32.

UNDERLINING
In the RUNOFF language, the underlining was quite easy. But in roff this is much more difficult.

Underlining with .ul
There exists a groff request .ul (see above) that can underline the next or further source lines in nroff, but

in troff it produces only a font change into italic. So this request is not really useful.

Underlining with .UL from ms
In the ‘ms’ macro package in tmac/s.tmac groff_ms(7), there is the macro .UL. But this works only in

troff, not in nroff.

Underlining macro definitions
So one can use the italic nroff idea from .ul and the troff definition in ms for writing a useful new macro,

something like

.de UNDERLINE

. ie n \\$1\f[I]\\$2\f[P]\\$3

groff 1.22.4 21 March 2020 20

GROFF(7) Miscellaneous Information Manual GROFF(7)

. el \\$1\Z'\\$2'\v'.25m'\D'l \w'\\$2'u 0'\v'−.25m'\\$3

..

If doclifter(1) makes trouble, change the macro name UNDERLINE into some 2-letter word, like Ul.
Moreover change the font writing from \f[P] to \fP.

Underlining without macro definitions
If one does not want to use macro definitions, e.g., when doclifter gets lost, use the following:

.ds u1 before

.ds u2 in

.ds u3 after

.ie n *[u1]\f[I]*[u2]\f[P]*[u3]

.el *[u1]\Z'*[u2]'\v'.25m'\D'l \w'*[u2]'u 0'\v'−.25m'*[u3]

Due to doclifter, it might be necessary to change the variable writing \[xy] and *[xy] into the strange an-

cient writing *(xy and \(xy, and so on.

Then these lines could look like

.ds u1 before

.ds u2 in

.ds u3 after

.ie n *[u1]\fI*(u2\fP*(u3

.el *(u1\Z'*(u2'\v'.25m’\D'l \w'*(u2'u 0'\v'−.25m'*(u3

The result looks like

before in after

Underlining with Overstriking \z and \(ul
There is another possibility for underlining by using overstriking with \zc (print c with zero width without

spacing) and \(ul (underline character). This produces the underlining of 1 character, both in nroff and in

troff.

For example the underlining of a character say t looks like \z\[ul]t or \z\(ult

Longer words look then a bit strange, but a useful mode is to write each character into a whole own line.

To underlines the 3 character part "tar" of the word "start":

before s\

\z\[ul]t\

\z\[ul]a\

\z\[ul]r\

t after

or

before s\

\z\(ult\

\z\(ula\

\z\(ulr\

t after

The result looks like

before start after

COMPATIBILITY
The differences between the groff language and classical troff as defined by [CSTR #54] are documented in

groff_diff(7).

The groff system provides a compatibility mode, see groff(1) on how to inv oke this.

AUTHORS
This document was written by Bernd Warken 〈groff−bernd.warken−72@web.de〉 .

SEE ALSO
Groff: The GNU Implementation of troff , by Trent A. Fisher and Werner Lemberg, is the primary groff

manual. You can browse it interactively with “info groff”. Besides the gory details, it contains many

groff 1.22.4 21 March 2020 21

GROFF(7) Miscellaneous Information Manual GROFF(7)

examples.

groff(1)

the usage of the groff program and pointers to the documentation and availability of the groff sys-

tem.

groff_diff(7)

describes the differences between the groff language and classical troff.

This is the authoritative document for the predefined language elements that are specific to groff.

groff_char(7)

the predefined groff special characters (glyphs).

groff_font(5)

the specification of fonts and the DESC file.

groff_tmac(5)

contains an overview of available groff macro packages, instructions on how to interface them

with a document, guidance on writing macro packages and using diversions, and historical infor-

mation on macro package naming conventions.

roff(7) the history of roff, the common parts shared by all roff systems, and pointers to further documen-

tation.

[CSTR #54]

Nroff/Troff User’s Manual by Ossanna & Kernighan 〈http://cm.bell−labs.com/cm/cs/cstr/54.ps.gz〉
— the bible for classical troff.

Wikipedia

article about groff 〈https://en.wikipedia.org/wiki/Groff_%28software%29〉 .

Tutorial about groff

Manas Laha - An Introduction to the GNU Groff Text Processing System 〈dl.dropbox.com/u/

4299293/grofftut.pdf〉

troff.org

This is a collection of internet sites with classical roff documentations and other information.

groff 1.22.4 21 March 2020 22

