
GO-REMOTE(7) Miscellaneous Information Manual GO-REMOTE(7)

NAME
go − tool for managing Go source code

DESCRIPTION
An import path (see go-importpath(1)) denotes a package stored in the local file system. Certain import

paths also describe how to obtain the source code for the package using a revision control system.

A few common code hosting sites have special syntax:

BitBucket (Mercurial)

import "bitbucket.org/user/project"

import "bitbucket.org/user/project/sub/directory"

GitHub (Git)

import "github.com/user/project"

import "github.com/user/project/sub/directory"

Google Code Project Hosting (Git, Mercurial, Subversion)

import "code.google.com/p/project"

import "code.google.com/p/project/sub/directory"

import "code.google.com/p/project.subrepository"

import "code.google.com/p/project.subrepository/sub/directory"

Launchpad (Bazaar)

import "launchpad.net/project"

import "launchpad.net/project/series"

import "launchpad.net/project/series/sub/directory"

import "launchpad.net/˜user/project/branch"

import "launchpad.net/˜user/project/branch/sub/directory"

For code hosted on other servers, import paths may either be qualified with the version control type, or the

go tool can dynamically fetch the import path over https/http and discover where the code resides from a

<meta> tag in the HTML.

To declare the code location, an import path of the form

repository.vcs/path

specifies the given repository, with or without the .vcs suffix, using the named version control system, and

then the path inside that repository. The supported version control systems are:

Bazaar

.bzr

Git

.git

Mercurial

.hg

2012-05-13 1



GO-REMOTE(7) Miscellaneous Information Manual GO-REMOTE(7)

Subversion

.svn

For example,

import "example.org/user/foo.hg"

denotes the root directory of the Mercurial repository at example.org/user/foo or foo.hg, and

import "example.org/repo.git/foo/bar"

denotes the foo/bar directory of the Git repository at example.com/repo or repo.git.

When a version control system supports multiple protocols, each is tried in turn when downloading. For

example, a Git download tries git://, then https://, then http://.

If the import path is not a known code hosting site and also lacks a version control qualifier, the go tool at-

tempts to fetch the import over https/http and looks for a <meta> tag in the document’s HTML <head>.

The meta tag has the form:

<meta name="go-import" content="import-prefix vcs repo-root">

The import-prefix is the import path corresponding to the repository root. It must be a prefix or an exact

match of the package being fetched with "go get". If it’s not an exact match, another http request is made at

the prefix to verify the <meta> tags match.

The vcs is one of "git", "hg", "svn", etc,

The repo-root is the root of the version control system containing a scheme and not containing a .vcs quali-

fier.

For example,

import "example.org/pkg/foo"

will result in the following request(s):

https://example.org/pkg/foo?go-get=1 (preferred)

http://example.org/pkg/foo?go-get=1 (fallback)

If that page contains the meta tag

<meta name="go-import" content="example.org git https://code.org/r/p/exproj">

the go tool will verify that https://example.org/?go-get=1 contains the same meta tag and then git clone

https://code.org/r/p/exproj into GOPATH/src/example.org.

New downloaded packages are written to the first directory listed in the GOPATH environment variable

(see go-path(1)).

The go command attempts to download the version of the package appropriate for the Go release being

used. See go-install(1) for more.

2012-05-13 2



GO-REMOTE(7) Miscellaneous Information Manual GO-REMOTE(7)

AUTHOR
This manual page was written by Michael Stapelberg <stapelberg@debian.org>, for the Debian project

(and may be used by others).

2012-05-13 3


