
GIT−UPDATE−REF(1) Git Manual GIT−UPDATE−REF(1)

NAME
git-update-ref − Update the object name stored in a ref safely

SYNOPSIS
git update−ref [−m <reason>] [−−no−deref] (−d <ref> [<oldvalue>] | [−−create−reflog] <ref> <newvalue> [<oldvalue>] | −−stdin [−z])

DESCRIPTION
Given two arguments, stores the <newvalue> in the <ref>, possibly dereferencing the symbolic refs. E.g. git

update−ref HEAD <newvalue> updates the current branch head to the new object.

Given three arguments, stores the <newvalue> in the <ref>, possibly dereferencing the symbolic refs, after
verifying that the current value of the <ref> matches <oldvalue>. E.g. git update−ref refs/heads/master

<newvalue> <oldvalue> updates the master branch head to <newvalue> only if its current value is
<oldvalue>. You can specify 40 "0" or an empty string as <oldvalue> to make sure that the ref you are
creating does not exist.

It also allows a "ref" file to be a symbolic pointer to another ref file by starting with the four−byte header
sequence of "ref:".

More importantly, it allows the update of a ref file to follow these symbolic pointers, whether they are
symlinks or these "regular file symbolic refs". It follows real symlinks only if they start with "refs/":
otherwise it will just try to read them and update them as a regular file (i.e. it will allow the filesystem to
follow them, but will overwrite such a symlink to somewhere else with a regular filename).

If −−no−deref is given, <ref> itself is overwritten, rather than the result of following the symbolic pointers.

In general, using

git update−ref HEAD "$head"

should be a lot safer than doing

echo "$head" > "$GIT_DIR/HEAD"

both from a symlink following standpoint and an error checking standpoint. The "refs/" rule for symlinks
means that symlinks that point to "outside" the tree are safe: they’ll be followed for reading but not for
writing (so we’ll never write through a ref symlink to some other tree, if you have copied a whole archive
by creating a symlink tree).

With −d flag, it deletes the named <ref> after verifying it still contains <oldvalue>.

With −−stdin, update−ref reads instructions from standard input and performs all modifications together.
Specify commands of the form:

update SP <ref> SP <newvalue> [SP <oldvalue>] LF
create SP <ref> SP <newvalue> LF
delete SP <ref> [SP <oldvalue>] LF
verify SP <ref> [SP <oldvalue>] LF
option SP <opt> LF

With −−create−reflog, update−ref will create a reflog for each ref even if one would not ordinarily be
created.

Quote fields containing whitespace as if they were strings in C source code; i.e., surrounded by
double−quotes and with backslash escapes. Use 40 "0" characters or the empty string to specify a zero

Git 2.25.1 02/08/2023 1

GIT−UPDATE−REF(1) Git Manual GIT−UPDATE−REF(1)

value. To specify a missing value, omit the value and its preceding SP entirely.

Alternatively, use −z to specify in NUL−terminated format, without quoting:

update SP <ref> NUL <newvalue> NUL [<oldvalue>] NUL
create SP <ref> NUL <newvalue> NUL
delete SP <ref> NUL [<oldvalue>] NUL
verify SP <ref> NUL [<oldvalue>] NUL
option SP <opt> NUL

In this format, use 40 "0" to specify a zero value, and use the empty string to specify a missing value.

In either format, values can be specified in any form that Git recognizes as an object name. Commands in
any other format or a repeated <ref> produce an error. Command meanings are:

update
Set <ref> to <newvalue> after verifying <oldvalue>, if given. Specify a zero <newvalue> to ensure the
ref does not exist after the update and/or a zero <oldvalue> to make sure the ref does not exist before
the update.

create
Create <ref> with <newvalue> after verifying it does not exist. The given <newvalue> may not be
zero.

delete
Delete <ref> after verifying it exists with <oldvalue>, if given. If given, <oldvalue> may not be zero.

verify
Verify <ref> against <oldvalue> but do not change it. If <oldvalue> zero or missing, the ref must not
exist.

option
Modify behavior of the next command naming a <ref>. The only valid option is no−deref to avoid
dereferencing a symbolic ref.

If all <ref>s can be locked with matching <oldvalue>s simultaneously, all modifications are performed.
Otherwise, no modifications are performed. Note that while each individual <ref> is updated or deleted
atomically, a concurrent reader may still see a subset of the modifications.

LOGGING UPDATES
If config parameter "core.logAllRefUpdates" is true and the ref is one under "refs/heads/", "refs/remotes/",
"refs/notes/", or the symbolic ref HEAD; or the file "$GIT_DIR/logs/<ref>" exists then git update−ref will
append a line to the log file "$GIT_DIR/logs/<ref>" (dereferencing all symbolic refs before creating the log
name) describing the change in ref value. Log lines are formatted as:

oldsha1 SP newsha1 SP committer LF

Where "oldsha1" is the 40 character hexadecimal value previously stored in <ref>, "newsha1" is the 40
character hexadecimal value of <newvalue> and "committer" is the committer’s name, email address and
date in the standard Git committer ident format.

Optionally with −m:

oldsha1 SP newsha1 SP committer TAB message LF

Where all fields are as described above and "message" is the value supplied to the −m option.

An update will fail (without changing <ref>) if the current user is unable to create a new log file, append to

Git 2.25.1 02/08/2023 2

GIT−UPDATE−REF(1) Git Manual GIT−UPDATE−REF(1)

the existing log file or does not have committer information available.

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 3

