
GIT−SWITCH(1) Git Manual GIT−SWITCH(1)

NAME
git-switch − Switch branches

SYNOPSIS
git switch [<options>] [−−no−guess] <branch>
git switch [<options>] −−detach [<start−point>]
git switch [<options>] (−c|−C) <new−branch> [<start−point>]
git switch [<options>] −−orphan <new−branch>

DESCRIPTION
Switch to a specified branch. The working tree and the index are updated to match the branch. All new
commits will be added to the tip of this branch.

Optionally a new branch could be created with either −c, −C, automatically from a remote branch of same
name (see −−guess), or detach the working tree from any branch with −−detach, along with switching.

Switching branches does not require a clean index and working tree (i.e. no differences compared to
HEAD). The operation is aborted however if the operation leads to loss of local changes, unless told
otherwise with −−discard−changes or −−merge.

THIS COMMAND IS EXPERIMENTAL. THE BEHAVIOR MAY CHANGE.

OPTIONS
<branch>

Branch to switch to.

<new−branch>
Name for the new branch.

<start−point>
The starting point for the new branch. Specifying a <start−point> allows you to create a branch based
on some other point in history than where HEAD currently points. (Or, in the case of −−detach,
allows you to inspect and detach from some other point.)

You can use the @{−N} syntax to refer to the N−th last branch/commit switched to using "git switch"
or "git checkout" operation. You may also specify − which is synonymous to @{−1}. This is often
used to switch quickly between two branches, or to undo a branch switch by mistake.

As a special case, you may use A...B as a shortcut for the merge base of A and B if there is exactly one
merge base. You can leave out at most one of A and B, in which case it defaults to HEAD.

−c <new−branch>, −−create <new−branch>
Create a new branch named <new−branch> starting at <start−point> before switching to the branch.
This is a convenient shortcut for:

$ git branch <new−branch>
$ git switch <new−branch>

−C <new−branch>, −−force−create <new−branch>
Similar to −−create except that if <new−branch> already exists, it will be reset to <start−point>.
This is a convenient shortcut for:

$ git branch −f <new−branch>
$ git switch <new−branch>

−d, −−detach

Git 2.25.1 02/08/2023 1



GIT−SWITCH(1) Git Manual GIT−SWITCH(1)

Switch to a commit for inspection and discardable experiments. See the "DETACHED HEAD" section
in git-checkout(1) for details.

−−guess, −−no−guess
If <branch> is not found but there does exist a tracking branch in exactly one remote (call it
<remote>) with a matching name, treat as equivalent to

$ git switch −c <branch> −−track <remote>/<branch>

If the branch exists in multiple remotes and one of them is named by the checkout.defaultRemote

configuration variable, we’ll use that one for the purposes of disambiguation, even if the <branch>

isn’t unique across all remotes. Set it to e.g. checkout.defaultRemote=origin to always checkout
remote branches from there if <branch> is ambiguous but exists on the origin remote. See also
checkout.defaultRemote in git-config(1).

−−guess is the default behavior. Use −−no−guess to disable it.

−f, −−force
An alias for −−discard−changes.

−−discard−changes
Proceed even if the index or the working tree differs from HEAD. Both the index and working tree are
restored to match the switching target. If −−recurse−submodules is specified, submodule content is
also restored to match the switching target. This is used to throw away local changes.

−m, −−merge
If you have local modifications to one or more files that are different between the current branch and
the branch to which you are switching, the command refuses to switch branches in order to preserve
your modifications in context. However, with this option, a three−way merge between the current
branch, your working tree contents, and the new branch is done, and you will be on the new branch.

When a merge conflict happens, the index entries for conflicting paths are left unmerged, and you need
to resolve the conflicts and mark the resolved paths with git add (or git rm if the merge should result
in deletion of the path).

−−conflict=<style>
The same as −−merge option above, but changes the way the conflicting hunks are presented,
overriding the merge.conflictStyle configuration variable. Possible values are "merge" (default) and
"diff3" (in addition to what is shown by "merge" style, shows the original contents).

−q, −−quiet
Quiet, suppress feedback messages.

−−progress, −−no−progress
Progress status is reported on the standard error stream by default when it is attached to a terminal,
unless −−quiet is specified. This flag enables progress reporting even if not attached to a terminal,
regardless of −−quiet.

−t, −−track
When creating a new branch, set up "upstream" configuration. −c is implied. See −−track in git-

branch(1) for details.

If no −c option is given, the name of the new branch will be derived from the remote−tracking branch,
by looking at the local part of the refspec configured for the corresponding remote, and then stripping
the initial part up to the "*". This would tell us to use hack as the local branch when branching off of
origin/hack (or remotes/origin/hack, or even refs/remotes/origin/hack). If the given name has no
slash, or the above guessing results in an empty name, the guessing is aborted. You can explicitly give
a name with −c in such a case.

−−no−track

Git 2.25.1 02/08/2023 2



GIT−SWITCH(1) Git Manual GIT−SWITCH(1)

Do not set up "upstream" configuration, even if the branch.autoSetupMerge configuration variable is
true.

−−orphan <new−branch>
Create a new orphan branch, named <new−branch>. All tracked files are removed.

−−ignore−other−worktrees
git switch refuses when the wanted ref is already checked out by another worktree. This option makes
it check the ref out anyway. In other words, the ref can be held by more than one worktree.

−−recurse−submodules, −−no−recurse−submodules
Using −−recurse−submodules will update the content of all initialized submodules according to the
commit recorded in the superproject. If nothing (or −−no−recurse−submodules) is used, the work
trees of submodules will not be updated. Just like git-submodule(1), this will detach HEAD of the
submodules.

EXAMPLES
The following command switches to the "master" branch:

$ git switch master

After working in the wrong branch, switching to the correct branch would be done using:

$ git switch mytopic

However, your "wrong" branch and correct "mytopic" branch may differ in files that you have modified
locally, in which case the above switch would fail like this:

$ git switch mytopic
error: You have local changes to 'frotz'; not switching branches.

You can give the −m flag to the command, which would try a three−way merge:

$ git switch −m mytopic
Auto−merging frotz

After this three−way merge, the local modifications are not registered in your index file, so git diff would
show you what changes you made since the tip of the new branch.

To switch back to the previous branch before we switched to mytopic (i.e. "master" branch):

$ git switch −

You can grow a new branch from any commit. For example, switch to "HEAD˜3" and create branch
"fixup":

$ git switch −c fixup HEAD˜3
Switched to a new branch 'fixup'

If you want to start a new branch from a remote branch of the same name:

Git 2.25.1 02/08/2023 3



GIT−SWITCH(1) Git Manual GIT−SWITCH(1)

$ git switch new−topic
Branch 'new−topic' set up to track remote branch 'new−topic' from 'origin'
Switched to a new branch 'new−topic'

To check out commit HEAD˜3 for temporary inspection or experiment without creating a new branch:

$ git switch −−detach HEAD˜3
HEAD is now at 9fc9555312 Merge branch 'cc/shared−index−permbits'

If it turns out whatever you have done is worth keeping, you can always create a new name for it (without
switching away):

$ git switch −c good−surprises

SEE ALSO
git-checkout(1), git-branch(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 4


