
GIT−STASH(1) Git Manual GIT−STASH(1)

NAME
git-stash − Stash the changes in a dirty working directory away

SYNOPSIS
git stash list [<options>]
git stash show [<options>] [<stash>]
git stash drop [−q|−−quiet] [<stash>]
git stash ( pop | apply ) [−−index] [−q|−−quiet] [<stash>]
git stash branch <branchname> [<stash>]
git stash [push [−p|−−patch] [−k|−−[no−]keep−index] [−q|−−quiet]

[−u|−−include−untracked] [−a|−−all] [−m|−−message <message>]
[−−] [<pathspec>...]]

git stash clear
git stash create [<message>]
git stash store [−m|−−message <message>] [−q|−−quiet] <commit>

DESCRIPTION
Use git stash when you want to record the current state of the working directory and the index, but want to
go back to a clean working directory. The command saves your local modifications away and reverts the
working directory to match the HEAD commit.

The modifications stashed away by this command can be listed with git stash list, inspected with git stash

show, and restored (potentially on top of a different commit) with git stash apply. Calling git stash

without any arguments is equivalent to git stash push. A stash is by default listed as "WIP on branchname

...", but you can give a more descriptive message on the command line when you create one.

The latest stash you created is stored in refs/stash; older stashes are found in the reflog of this reference
and can be named using the usual reflog syntax (e.g. stash@{0} is the most recently created stash,
stash@{1} is the one before it, stash@{2.hours.ago} is also possible). Stashes may also be referenced by
specifying just the stash index (e.g. the integer n is equivalent to stash@{n}).

OPTIONS
push [−p|−−patch] [−k|−−[no−]keep−index] [−u|−−include−untracked] [−a|−−all] [−q|−−quiet]
[−m|−−message <message>] [−−] [<pathspec>...]

Save your local modifications to a new stash entry and roll them back to HEAD (in the working tree
and in the index). The <message> part is optional and gives the description along with the stashed
state.

For quickly making a snapshot, you can omit "push". In this mode, non−option arguments are not
allowed to prevent a misspelled subcommand from making an unwanted stash entry. The two
exceptions to this are stash −p which acts as alias for stash push −p and pathspecs, which are allowed
after a double hyphen −− for disambiguation.

When pathspec is given to git stash push, the new stash entry records the modified states only for the
files that match the pathspec. The index entries and working tree files are then rolled back to the state
in HEAD only for these files, too, leaving files that do not match the pathspec intact.

If the −−keep−index option is used, all changes already added to the index are left intact.

If the −−include−untracked option is used, all untracked files are also stashed and then cleaned up
with git clean, leaving the working directory in a very clean state. If the −−all option is used instead
then the ignored files are stashed and cleaned in addition to the untracked files.

With −−patch, you can interactively select hunks from the diff between HEAD and the working tree
to be stashed. The stash entry is constructed such that its index state is the same as the index state of

Git 2.25.1 02/08/2023 1



GIT−STASH(1) Git Manual GIT−STASH(1)

your repository, and its worktree contains only the changes you selected interactively. The selected
changes are then rolled back from your worktree. See the “Interactive Mode” section of git-add(1) to
learn how to operate the −−patch mode.

The −−patch option implies −−keep−index. You can use −−no−keep−index to override this.

save [−p|−−patch] [−k|−−[no−]keep−index] [−u|−−include−untracked] [−a|−−all] [−q|−−quiet] [<message>]
This option is deprecated in favour of git stash push. It differs from "stash push" in that it cannot take
pathspecs. Instead, all non−option arguments are concatenated to form the stash message.

list [<options>]
List the stash entries that you currently have. Each stash entry is listed with its name (e.g. stash@{0}

is the latest entry, stash@{1} is the one before, etc.), the name of the branch that was current when the
entry was made, and a short description of the commit the entry was based on.

stash@{0}: WIP on submit: 6ebd0e2... Update git−stash documentation
stash@{1}: On master: 9cc0589... Add git−stash

The command takes options applicable to the git log command to control what is shown and how. See
git-log(1).

show [<options>] [<stash>]
Show the changes recorded in the stash entry as a diff between the stashed contents and the commit
back when the stash entry was first created. When no <stash> is given, it shows the latest one. By
default, the command shows the diffstat, but it will accept any format known to git diff (e.g., git stash

show −p stash@{1} to view the second most recent entry in patch form). You can use stash.showStat
and/or stash.showPatch config variables to change the default behavior.

pop [−−index] [−q|−−quiet] [<stash>]
Remove a single stashed state from the stash list and apply it on top of the current working tree state,
i.e., do the inverse operation of git stash push. The working directory must match the index.

Applying the state can fail with conflicts; in this case, it is not removed from the stash list. You need to
resolve the conflicts by hand and call git stash drop manually afterwards.

If the −−index option is used, then tries to reinstate not only the working tree’s changes, but also the
index’s ones. However, this can fail, when you have conflicts (which are stored in the index, where you
therefore can no longer apply the changes as they were originally).

When no <stash> is given, stash@{0} is assumed, otherwise <stash> must be a reference of the form
stash@{<revision>}.

apply [−−index] [−q|−−quiet] [<stash>]
Like pop, but do not remove the state from the stash list. Unlike pop, <stash> may be any commit that
looks like a commit created by stash push or stash create.

branch <branchname> [<stash>]
Creates and checks out a new branch named <branchname> starting from the commit at which the
<stash> was originally created, applies the changes recorded in <stash> to the new working tree and
index. If that succeeds, and <stash> is a reference of the form stash@{<revision>}, it then drops the
<stash>. When no <stash> is given, applies the latest one.

This is useful if the branch on which you ran git stash push has changed enough that git stash apply

fails due to conflicts. Since the stash entry is applied on top of the commit that was HEAD at the time
git stash was run, it restores the originally stashed state with no conflicts.

clear
Remove all the stash entries. Note that those entries will then be subject to pruning, and may be
impossible to recover (see Examples below for a possible strategy).

Git 2.25.1 02/08/2023 2



GIT−STASH(1) Git Manual GIT−STASH(1)

drop [−q|−−quiet] [<stash>]
Remove a single stash entry from the list of stash entries. When no <stash> is given, it removes the
latest one. i.e. stash@{0}, otherwise <stash> must be a valid stash log reference of the form
stash@{<revision>}.

create
Create a stash entry (which is a regular commit object) and return its object name, without storing it
anywhere in the ref namespace. This is intended to be useful for scripts. It is probably not the
command you want to use; see "push" above.

store
Store a given stash created via git stash create (which is a dangling merge commit) in the stash ref,
updating the stash reflog. This is intended to be useful for scripts. It is probably not the command you
want to use; see "push" above.

DISCUSSION
A stash entry is represented as a commit whose tree records the state of the working directory, and its first
parent is the commit at HEAD when the entry was created. The tree of the second parent records the state
of the index when the entry is made, and it is made a child of the HEAD commit. The ancestry graph looks
like this:

.−−−−W
/ /

−−−−−H−−−−I

where H is the HEAD commit, I is a commit that records the state of the index, and W is a commit that
records the state of the working tree.

EXAMPLES
Pulling into a dirty tree

When you are in the middle of something, you learn that there are upstream changes that are possibly
relevant to what you are doing. When your local changes do not conflict with the changes in the
upstream, a simple git pull will let you move forward.

However, there are cases in which your local changes do conflict with the upstream changes, and git

pull refuses to overwrite your changes. In such a case, you can stash your changes away, perform a
pull, and then unstash, like this:

$ git pull
...
file foobar not up to date, cannot merge.
$ git stash
$ git pull
$ git stash pop

Interrupted workflow
When you are in the middle of something, your boss comes in and demands that you fix something
immediately. Traditionally, you would make a commit to a temporary branch to store your changes
aw ay, and return to your original branch to make the emergency fix, like this:

# ... hack hack hack ...
$ git switch −c my_wip
$ git commit −a −m "WIP"
$ git switch master
$ edit emergency fix
$ git commit −a −m "Fix in a hurry"

Git 2.25.1 02/08/2023 3



GIT−STASH(1) Git Manual GIT−STASH(1)

$ git switch my_wip
$ git reset −−soft HEADˆ
# ... continue hacking ...

You can use git stash to simplify the above, like this:

# ... hack hack hack ...
$ git stash
$ edit emergency fix
$ git commit −a −m "Fix in a hurry"
$ git stash pop
# ... continue hacking ...

Testing partial commits
You can use git stash push −−keep−index when you want to make two or more commits out of the
changes in the work tree, and you want to test each change before committing:

# ... hack hack hack ...
$ git add −−patch foo # add just first part to the index
$ git stash push −−keep−index # save all other changes to the stash
$ edit/build/test first part
$ git commit −m 'First part' # commit fully tested change
$ git stash pop # prepare to work on all other changes
# ... repeat above five steps until one commit remains ...
$ edit/build/test remaining parts
$ git commit foo −m 'Remaining parts'

Recovering stash entries that were cleared/dropped erroneously
If you mistakenly drop or clear stash entries, they cannot be recovered through the normal safety
mechanisms. However, you can try the following incantation to get a list of stash entries that are still in
your repository, but not reachable any more:

git fsck −−unreachable |
grep commit | cut −d\ −f3 |
xargs git log −−merges −−no−walk −−grep=WIP

SEE ALSO
git-checkout(1), git-commit(1), git-reflog(1), git-reset(1), git-switch(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 4


