
GIT−SHELL(1) Git Manual GIT−SHELL(1)

NAME
git-shell − Restricted login shell for Git−only SSH access

SYNOPSIS
chsh −s $(command −v git−shell) <user>

git clone <user>@localhost:/path/to/repo.git

ssh <user>@localhost

DESCRIPTION
This is a login shell for SSH accounts to provide restricted Git access. It permits execution only of

server−side Git commands implementing the pull/push functionality, plus custom commands present in a

subdirectory named git−shell−commands in the user’s home directory.

COMMANDS
git shell accepts the following commands after the −c option:

git receive−pack <argument>, git upload−pack <argument>, git upload−archive <argument>

Call the corresponding server−side command to support the client’s git push, git fetch, or git archive

−−remote request.

cvs server

Imitate a CVS server. See git-cvsserver(1).

If a ˜/git−shell−commands directory is present, git shell will also handle other, custom commands by

running "git−shell−commands/<command> <arguments>" from the user’s home directory.

INTERACTIVE USE
By default, the commands above can be executed only with the −c option; the shell is not interactive.

If a ˜/git−shell−commands directory is present, git shell can also be run interactively (with no arguments).

If a help command is present in the git−shell−commands directory, it is run to provide the user with an

overview of allowed actions. Then a "git> " prompt is presented at which one can enter any of the

commands from the git−shell−commands directory, or exit to close the connection.

Generally this mode is used as an administrative interface to allow users to list repositories they hav e access

to, create, delete, or rename repositories, or change repository descriptions and permissions.

If a no−interactive−login command exists, then it is run and the interactive shell is aborted.

EXAMPLES
To disable interactive logins, displaying a greeting instead:

$ chsh −s /usr/bin/git−shell

$ mkdir $HOME/git−shell−commands

$ cat >$HOME/git−shell−commands/no−interactive−login <<\EOF

#!/bin/sh

printf '%s\n' "Hi $USER! You've successfully authenticated, but I do not"

printf '%s\n' "provide interactive shell access."

exit 128

EOF

$ chmod +x $HOME/git−shell−commands/no−interactive−login

To enable git−cvsserver access (which should generally have the no−interactive−login example above as a

prerequisite, as creating the git−shell−commands directory allows interactive logins):

$ cat >$HOME/git−shell−commands/cvs <<\EOF

if ! test $# = 1 && test "$1" = "server"

Git 2.25.1 02/08/2023 1

GIT−SHELL(1) Git Manual GIT−SHELL(1)

then

echo >&2 "git−cvsserver only handles \"server\""

exit 1

fi

exec git cvsserver server

EOF

$ chmod +x $HOME/git−shell−commands/cvs

SEE ALSO
ssh(1), git-daemon(1), contrib/git−shell−commands/README

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 2

