
GIT−RERERE(1) Git Manual GIT−RERERE(1)

NAME
git-rerere − Reuse recorded resolution of conflicted merges

SYNOPSIS
git rerere [clear|forget <pathspec>|diff|remaining|status|gc]

DESCRIPTION
In a workflow employing relatively long lived topic branches, the developer sometimes needs to resolve the
same conflicts over and over again until the topic branches are done (either merged to the "release" branch,
or sent out and accepted upstream).

This command assists the developer in this process by recording conflicted automerge results and
corresponding hand resolve results on the initial manual merge, and applying previously recorded hand
resolutions to their corresponding automerge results.

Note
You need to set the configuration variable rerere.enabled in order to enable this command.

COMMANDS
Normally, git rerere is run without arguments or user−intervention. However, it has several commands that
allow it to interact with its working state.

clear
Reset the metadata used by rerere if a merge resolution is to be aborted. Calling git am
[−−skip|−−abort] or git rebase [−−skip|−−abort] will automatically invoke this command.

forget <pathspec>
Reset the conflict resolutions which rerere has recorded for the current conflict in <pathspec>.

diff
Display diffs for the current state of the resolution. It is useful for tracking what has changed while the
user is resolving conflicts. Additional arguments are passed directly to the system diff command
installed in PATH.

status
Print paths with conflicts whose merge resolution rerere will record.

remaining
Print paths with conflicts that have not been autoresolved by rerere. This includes paths whose
resolutions cannot be tracked by rerere, such as conflicting submodules.

gc
Prune records of conflicted merges that occurred a long time ago. By default, unresolved conflicts
older than 15 days and resolved conflicts older than 60 days are pruned. These defaults are controlled
via the gc.rerereUnresolved and gc.rerereResolved configuration variables respectively.

DISCUSSION
When your topic branch modifies an overlapping area that your master branch (or upstream) touched since
your topic branch forked from it, you may want to test it with the latest master, even before your topic
branch is ready to be pushed upstream:

o−−−*−−−o topic
/

o−−−o−−−o−−−*−−−o−−−o master

For such a test, you need to merge master and topic somehow. One way to do it is to pull master into the
topic branch:

$ git switch topic

Git 2.25.1 02/08/2023 1

GIT−RERERE(1) Git Manual GIT−RERERE(1)

$ git merge master

o−−−*−−−o−−−+ topic
/ /

o−−−o−−−o−−−*−−−o−−−o master

The commits marked with * touch the same area in the same file; you need to resolve the conflicts when
creating the commit marked with +. Then you can test the result to make sure your work−in−progress still
works with what is in the latest master.

After this test merge, there are two ways to continue your work on the topic. The easiest is to build on top
of the test merge commit +, and when your work in the topic branch is finally ready, pull the topic branch
into master, and/or ask the upstream to pull from you. By that time, however, the master or the upstream
might have been advanced since the test merge +, in which case the final commit graph would look like
this:

$ git switch topic
$ git merge master
$... work on both topic and master branches
$ git switch master
$ git merge topic

o−−−*−−−o−−−+−−−o−−−o topic
/ / \

o−−−o−−−o−−−*−−−o−−−o−−−o−−−o−−−+ master

When your topic branch is long−lived, however, your topic branch would end up having many such "Merge
from master" commits on it, which would unnecessarily clutter the development history. Readers of the
Linux kernel mailing list may remember that Linus complained about such too frequent test merges when a
subsystem maintainer asked to pull from a branch full of "useless merges".

As an alternative, to keep the topic branch clean of test merges, you could blow away the test merge, and
keep building on top of the tip before the test merge:

$ git switch topic
$ git merge master
$ git reset −−hard HEADˆ ;# rewind the test merge
$... work on both topic and master branches
$ git switch master
$ git merge topic

o−−−*−−−o−−−−−−−o−−−o topic
/ \

o−−−o−−−o−−−*−−−o−−−o−−−o−−−o−−−+ master

This would leave only one merge commit when your topic branch is finally ready and merged into the
master branch. This merge would require you to resolve the conflict, introduced by the commits marked
with *. Howev er, this conflict is often the same conflict you resolved when you created the test merge you
blew away. git rerere helps you resolve this final conflicted merge using the information from your earlier
hand resolve.

Git 2.25.1 02/08/2023 2

GIT−RERERE(1) Git Manual GIT−RERERE(1)

Running the git rerere command immediately after a conflicted automerge records the conflicted working
tree files, with the usual conflict markers <<<<<<<, =======, and >>>>>>> in them. Later, after you are
done resolving the conflicts, running git rerere again will record the resolved state of these files. Suppose
you did this when you created the test merge of master into the topic branch.

Next time, after seeing the same conflicted automerge, running git rerere will perform a three−way merge
between the earlier conflicted automerge, the earlier manual resolution, and the current conflicted
automerge. If this three−way merge resolves cleanly, the result is written out to your working tree file, so
you do not have to manually resolve it. Note that git rerere leaves the index file alone, so you still need to
do the final sanity checks with git diff (or git diff −c) and git add when you are satisfied.

As a convenience measure, git merge automatically invokes git rerere upon exiting with a failed automerge
and git rerere records the hand resolve when it is a new conflict, or reuses the earlier hand resolve when it is
not. git commit also invokes git rerere when committing a merge result. What this means is that you do not
have to do anything special yourself (besides enabling the rerere.enabled config variable).

In our example, when you do the test merge, the manual resolution is recorded, and it will be reused when
you do the actual merge later with the updated master and topic branch, as long as the recorded resolution is
still applicable.

The information git rerere records is also used when running git rebase. After blowing away the test merge
and continuing development on the topic branch:

o−−−*−−−o−−−−−−−o−−−o topic
/

o−−−o−−−o−−−*−−−o−−−o−−−o−−−o master

$ git rebase master topic

o−−−*−−−o−−−−−−−o−−−o topic
/

o−−−o−−−o−−−*−−−o−−−o−−−o−−−o master

you could run git rebase master topic, to bring yourself up to date before your topic is ready to be sent
upstream. This would result in falling back to a three−way merge, and it would conflict the same way as the
test merge you resolved earlier. git rerere will be run by git rebase to help you resolve this conflict.

[NOTE] git rerere relies on the conflict markers in the file to detect the conflict. If the file already contains
lines that look the same as lines with conflict markers, git rerere may fail to record a conflict resolution. To
work around this, the conflict−marker−size setting in gitattributes(5) can be used.

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 3

