
GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

NAME
git-diff-tree − Compares the content and mode of blobs found via two tree objects

SYNOPSIS
git diff−tree [−−stdin] [−m] [−s] [−v] [−−no−commit−id] [−−pretty]

[−t] [−r] [−c | −−cc] [−−combined−all−paths] [−−root]
[<common diff options>] <tree−ish> [<tree−ish>] [<path>...]

DESCRIPTION
Compares the content and mode of the blobs found via two tree objects.

If there is only one <tree−ish> given, the commit is compared with its parents (see −−stdin below).

Note that git diff−tree can use the tree encapsulated in a commit object.

OPTIONS
−p, −u, −−patch

Generate patch (see section on generating patches).

−s, −−no−patch
Suppress diff output. Useful for commands like git show that show the patch by default, or to cancel
the effect of −−patch.

−U<n>, −−unified=<n>
Generate diffs with <n> lines of context instead of the usual three. Implies −−patch. Implies −p.

−−output=<file>
Output to a specific file instead of stdout.

−−output−indicator−new=<char>, −−output−indicator−old=<char>, −−output−indicator−context=<char>
Specify the character used to indicate new, old or context lines in the generated patch. Normally they
are +, − and ' ' respectively.

−−raw
Generate the diff in raw format. This is the default.

−−patch−with−raw
Synonym for −p −−raw.

−−indent−heuristic
Enable the heuristic that shifts diff hunk boundaries to make patches easier to read. This is the default.

−−no−indent−heuristic
Disable the indent heuristic.

−−minimal
Spend extra time to make sure the smallest possible diff is produced.

−−patience
Generate a diff using the "patience diff" algorithm.

−−histogram
Generate a diff using the "histogram diff" algorithm.

−−anchored=<text>
Generate a diff using the "anchored diff" algorithm.

This option may be specified more than once.

If a line exists in both the source and destination, exists only once, and starts with this text, this
algorithm attempts to prevent it from appearing as a deletion or addition in the output. It uses the
"patience diff" algorithm internally.

Git 2.25.1 02/08/2023 1

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

−−diff−algorithm={patience|minimal|histogram|myers}
Choose a diff algorithm. The variants are as follows:

default, myers
The basic greedy diff algorithm. Currently, this is the default.

minimal
Spend extra time to make sure the smallest possible diff is produced.

patience
Use "patience diff" algorithm when generating patches.

histogram
This algorithm extends the patience algorithm to "support low−occurrence common elements".

For instance, if you configured the diff.algorithm variable to a non−default value and want to use the
default one, then you have to use −−diff−algorithm=default option.

−−stat[=<width>[,<name−width>[,<count>]]]
Generate a diffstat. By default, as much space as necessary will be used for the filename part, and the
rest for the graph part. Maximum width defaults to terminal width, or 80 columns if not connected to a
terminal, and can be overridden by <width>. The width of the filename part can be limited by giving
another width <name−width> after a comma. The width of the graph part can be limited by using
−−stat−graph−width=<width> (affects all commands generating a stat graph) or by setting
diff.statGraphWidth=<width> (does not affect git format−patch). By giving a third parameter
<count>, you can limit the output to the first <count> lines, followed by ... if there are more.

These parameters can also be set individually with −−stat−width=<width>,
−−stat−name−width=<name−width> and −−stat−count=<count>.

−−compact−summary
Output a condensed summary of extended header information such as file creations or deletions
("new" or "gone", optionally "+l" if it’s a symlink) and mode changes ("+x" or "−x" for adding or
removing executable bit respectively) in diffstat. The information is put between the filename part and
the graph part. Implies −−stat.

−−numstat
Similar to −−stat, but shows number of added and deleted lines in decimal notation and pathname
without abbreviation, to make it more machine friendly. For binary files, outputs two − instead of
saying 0 0.

−−shortstat
Output only the last line of the −−stat format containing total number of modified files, as well as
number of added and deleted lines.

−X[<param1,param2,...>], −−dirstat[=<param1,param2,...>]
Output the distribution of relative amount of changes for each sub−directory. The behavior of
−−dirstat can be customized by passing it a comma separated list of parameters. The defaults are
controlled by the diff.dirstat configuration variable (see git-config(1)). The following parameters are
available:

changes
Compute the dirstat numbers by counting the lines that have been removed from the source, or
added to the destination. This ignores the amount of pure code movements within a file. In other
words, rearranging lines in a file is not counted as much as other changes. This is the default
behavior when no parameter is given.

lines
Compute the dirstat numbers by doing the regular line−based diff analysis, and summing the
removed/added line counts. (For binary files, count 64−byte chunks instead, since binary files
have no natural concept of lines). This is a more expensive −−dirstat behavior than the changes

Git 2.25.1 02/08/2023 2

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

behavior, but it does count rearranged lines within a file as much as other changes. The resulting
output is consistent with what you get from the other −−*stat options.

files
Compute the dirstat numbers by counting the number of files changed. Each changed file counts
equally in the dirstat analysis. This is the computationally cheapest −−dirstat behavior, since it
does not have to look at the file contents at all.

cumulative
Count changes in a child directory for the parent directory as well. Note that when using
cumulative, the sum of the percentages reported may exceed 100%. The default
(non−cumulative) behavior can be specified with the noncumulative parameter.

<limit>
An integer parameter specifies a cut−off percent (3% by default). Directories contributing less
than this percentage of the changes are not shown in the output.

Example: The following will count changed files, while ignoring directories with less than 10% of the
total amount of changed files, and accumulating child directory counts in the parent directories:
−−dirstat=files,10,cumulative.

−−cumulative
Synonym for −−dirstat=cumulative

−−dirstat−by−file[=<param1,param2>...]
Synonym for −−dirstat=files,param1,param2...

−−summary
Output a condensed summary of extended header information such as creations, renames and mode
changes.

−−patch−with−stat
Synonym for −p −−stat.

−z
When −−raw, −−numstat, −−name−only or −−name−status has been given, do not munge
pathnames and use NULs as output field terminators.

Without this option, pathnames with "unusual" characters are quoted as explained for the configuration
variable core.quotePath (see git-config(1)).

−−name−only
Show only names of changed files.

−−name−status
Show only names and status of changed files. See the description of the −−diff−filter option on what
the status letters mean.

−−submodule[=<format>]
Specify how differences in submodules are shown. When specifying −−submodule=short the short
format is used. This format just shows the names of the commits at the beginning and end of the range.
When −−submodule or −−submodule=log is specified, the log format is used. This format lists the
commits in the range like git-submodule(1) summary does. When −−submodule=diff is specified,
the diff format is used. This format shows an inline diff of the changes in the submodule contents
between the commit range. Defaults to diff.submodule or the short format if the config option is
unset.

−−color[=<when>]
Show colored diff. −−color (i.e. without =<when>) is the same as −−color=always. <when> can be
one of always, never, or auto.

−−no−color

Git 2.25.1 02/08/2023 3

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

Turn off colored diff. It is the same as −−color=never.

−−color−moved[=<mode>]
Moved lines of code are colored differently. The <mode> defaults to no if the option is not given and
to zebra if the option with no mode is given. The mode must be one of:

no
Moved lines are not highlighted.

default
Is a synonym for zebra. This may change to a more sensible mode in the future.

plain
Any line that is added in one location and was removed in another location will be colored with
color.diff.newMoved. Similarly color.diff.oldMoved will be used for removed lines that are added
somewhere else in the diff. This mode picks up any moved line, but it is not very useful in a
review to determine if a block of code was moved without permutation.

blocks
Blocks of moved text of at least 20 alphanumeric characters are detected greedily. The detected
blocks are painted using either the color.diff.{old,new}Moved color. Adjacent blocks cannot be
told apart.

zebra
Blocks of moved text are detected as in blocks mode. The blocks are painted using either the
color.diff.{old,new}Moved color or color.diff.{old,new}MovedAlternative. The change between
the two colors indicates that a new block was detected.

dimmed−zebra
Similar to zebra, but additional dimming of uninteresting parts of moved code is performed. The
bordering lines of two adjacent blocks are considered interesting, the rest is uninteresting.
dimmed_zebra is a deprecated synonym.

−−no−color−moved
Turn off move detection. This can be used to override configuration settings. It is the same as
−−color−moved=no.

−−color−moved−ws=<modes>
This configures how whitespace is ignored when performing the move detection for −−color−moved.
These modes can be given as a comma separated list:

no
Do not ignore whitespace when performing move detection.

ignore−space−at−eol
Ignore changes in whitespace at EOL.

ignore−space−change
Ignore changes in amount of whitespace. This ignores whitespace at line end, and considers all
other sequences of one or more whitespace characters to be equivalent.

ignore−all−space
Ignore whitespace when comparing lines. This ignores differences even if one line has
whitespace where the other line has none.

allow−indentation−change
Initially ignore any whitespace in the move detection, then group the moved code blocks only
into a block if the change in whitespace is the same per line. This is incompatible with the other
modes.

−−no−color−moved−ws
Do not ignore whitespace when performing move detection. This can be used to override configuration
settings. It is the same as −−color−moved−ws=no.

Git 2.25.1 02/08/2023 4

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

−−word−diff[=<mode>]
Show a word diff, using the <mode> to delimit changed words. By default, words are delimited by
whitespace; see −−word−diff−regex below. The <mode> defaults to plain, and must be one of:

color
Highlight changed words using only colors. Implies −−color.

plain
Show words as [−removed−] and {+added+}. Makes no attempts to escape the delimiters if they
appear in the input, so the output may be ambiguous.

porcelain
Use a special line−based format intended for script consumption. Added/removed/unchanged
runs are printed in the usual unified diff format, starting with a +/−/‘ ‘ character at the beginning
of the line and extending to the end of the line. Newlines in the input are represented by a tilde ˜
on a line of its own.

none
Disable word diff again.

Note that despite the name of the first mode, color is used to highlight the changed parts in all modes if
enabled.

−−word−diff−regex=<regex>
Use <regex> to decide what a word is, instead of considering runs of non−whitespace to be a word.
Also implies −−word−diff unless it was already enabled.

Every non−overlapping match of the <regex> is considered a word. Anything between these matches
is considered whitespace and ignored(!) for the purposes of finding differences. You may want to
append |[ˆ[:space:]] to your regular expression to make sure that it matches all non−whitespace
characters. A match that contains a newline is silently truncated(!) at the newline.

For example, −−word−diff−regex=. will treat each character as a word and, correspondingly, show
differences character by character.

The regex can also be set via a diff driver or configuration option, see gitattributes(5) or git-config(1).
Giving it explicitly overrides any diff driver or configuration setting. Diff drivers override
configuration settings.

−−color−words[=<regex>]
Equivalent to −−word−diff=color plus (if a regex was specified) −−word−diff−regex=<regex>.

−−no−renames
Turn off rename detection, even when the configuration file gives the default to do so.

−−[no−]rename−empty
Whether to use empty blobs as rename source.

−−check
Warn if changes introduce conflict markers or whitespace errors. What are considered whitespace
errors is controlled by core.whitespace configuration. By default, trailing whitespaces (including lines
that consist solely of whitespaces) and a space character that is immediately followed by a tab
character inside the initial indent of the line are considered whitespace errors. Exits with non−zero
status if problems are found. Not compatible with −−exit−code.

−−ws−error−highlight=<kind>
Highlight whitespace errors in the context, old or new lines of the diff. Multiple values are separated
by comma, none resets previous values, default reset the list to new and all is a shorthand for
old,new,context. When this option is not given, and the configuration variable diff.wsErrorHighlight
is not set, only whitespace errors in new lines are highlighted. The whitespace errors are colored with

Git 2.25.1 02/08/2023 5

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

color.diff.whitespace.

−−full−index
Instead of the first handful of characters, show the full pre− and post−image blob object names on the
"index" line when generating patch format output.

−−binary
In addition to −−full−index, output a binary diff that can be applied with git−apply. Implies −−patch.

−−abbrev[=<n>]
Instead of showing the full 40−byte hexadecimal object name in diff−raw format output and diff−tree
header lines, show only a partial prefix. This is independent of the −−full−index option above, which
controls the diff−patch output format. Non default number of digits can be specified with
−−abbrev=<n>.

−B[<n>][/<m>], −−break−rewrites[=[<n>][/<m>]]
Break complete rewrite changes into pairs of delete and create. This serves two purposes:

It affects the way a change that amounts to a total rewrite of a file not as a series of deletion and
insertion mixed together with a very few lines that happen to match textually as the context, but as a
single deletion of everything old followed by a single insertion of everything new, and the number m
controls this aspect of the −B option (defaults to 60%). −B/70% specifies that less than 30% of the
original should remain in the result for Git to consider it a total rewrite (i.e. otherwise the resulting
patch will be a series of deletion and insertion mixed together with context lines).

When used with −M, a totally−rewritten file is also considered as the source of a rename (usually −M
only considers a file that disappeared as the source of a rename), and the number n controls this aspect
of the −B option (defaults to 50%). −B20% specifies that a change with addition and deletion
compared to 20% or more of the file’s size are eligible for being picked up as a possible source of a
rename to another file.

−M[<n>], −−find−renames[=<n>]
Detect renames. If n is specified, it is a threshold on the similarity index (i.e. amount of
addition/deletions compared to the file’s size). For example, −M90% means Git should consider a
delete/add pair to be a rename if more than 90% of the file hasn’t changed. Without a % sign, the
number is to be read as a fraction, with a decimal point before it. I.e., −M5 becomes 0.5, and is thus
the same as −M50%. Similarly, −M05 is the same as −M5%. To limit detection to exact renames, use
−M100%. The default similarity index is 50%.

−C[<n>], −−find−copies[=<n>]
Detect copies as well as renames. See also −−find−copies−harder. If n is specified, it has the same
meaning as for −M<n>.

−−find−copies−harder
For performance reasons, by default, −C option finds copies only if the original file of the copy was
modified in the same changeset. This flag makes the command inspect unmodified files as candidates
for the source of copy. This is a very expensive operation for large projects, so use it with caution.
Giving more than one −C option has the same effect.

−D, −−irreversible−delete
Omit the preimage for deletes, i.e. print only the header but not the diff between the preimage and
/dev/null. The resulting patch is not meant to be applied with patch or git apply; this is solely for
people who want to just concentrate on reviewing the text after the change. In addition, the output
obviously lacks enough information to apply such a patch in reverse, even manually, hence the name
of the option.

When used together with −B, omit also the preimage in the deletion part of a delete/create pair.

−l<num>
The −M and −C options require O(nˆ2) processing time where n is the number of potential

Git 2.25.1 02/08/2023 6

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

rename/copy targets. This option prevents rename/copy detection from running if the number of
rename/copy targets exceeds the specified number.

−−diff−filter=[(A|C|D|M|R|T|U|X|B)...[*]]
Select only files that are Added (A), Copied (C), Deleted (D), Modified (M), Renamed (R), have their
type (i.e. regular file, symlink, submodule, ...) changed (T), are Unmerged (U), are Unknown (X), or
have had their pairing Broken (B). Any combination of the filter characters (including none) can be
used. When * (All−or−none) is added to the combination, all paths are selected if there is any file that
matches other criteria in the comparison; if there is no file that matches other criteria, nothing is
selected.

Also, these upper−case letters can be downcased to exclude. E.g. −−diff−filter=ad excludes added
and deleted paths.

Note that not all diffs can feature all types. For instance, diffs from the index to the working tree can
never hav e Added entries (because the set of paths included in the diff is limited by what is in the
index). Similarly, copied and renamed entries cannot appear if detection for those types is disabled.

−S<string>
Look for differences that change the number of occurrences of the specified string (i.e.
addition/deletion) in a file. Intended for the scripter’s use.

It is useful when you’re looking for an exact block of code (like a struct), and want to know the history
of that block since it first came into being: use the feature iteratively to feed the interesting block in the
preimage back into −S, and keep going until you get the very first version of the block.

Binary files are searched as well.

−G<regex>
Look for differences whose patch text contains added/removed lines that match <regex>.

To illustrate the difference between −S<regex> −−pickaxe−regex and −G<regex>, consider a commit
with the following diff in the same file:

+ return frotz(nitfol, two−>ptr, 1, 0);
...
− hit = frotz(nitfol, mf2.ptr, 1, 0);

While git log −G"frotz\(nitfol" will show this commit, git log −S"frotz\(nitfol" −−pickaxe−regex
will not (because the number of occurrences of that string did not change).

Unless −−text is supplied patches of binary files without a textconv filter will be ignored.

See the pickaxe entry in gitdiffcore(7) for more information.

−−find−object=<object−id>
Look for differences that change the number of occurrences of the specified object. Similar to −S, just
the argument is different in that it doesn’t search for a specific string but for a specific object id.

The object can be a blob or a submodule commit. It implies the −t option in git−log to also find trees.

−−pickaxe−all
When −S or −G finds a change, show all the changes in that changeset, not just the files that contain
the change in <string>.

−−pickaxe−regex
Treat the <string> given to −S as an extended POSIX regular expression to match.

−O<orderfile>

Git 2.25.1 02/08/2023 7

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

Control the order in which files appear in the output. This overrides the diff.orderFile configuration
variable (see git-config(1)). To cancel diff.orderFile, use −O/dev/null.

The output order is determined by the order of glob patterns in <orderfile>. All files with pathnames
that match the first pattern are output first, all files with pathnames that match the second pattern (but
not the first) are output next, and so on. All files with pathnames that do not match any pattern are
output last, as if there was an implicit match−all pattern at the end of the file. If multiple pathnames
have the same rank (they match the same pattern but no earlier patterns), their output order relative to
each other is the normal order.

<orderfile> is parsed as follows:

• Blank lines are ignored, so they can be used as separators for readability.

• Lines starting with a hash ("#") are ignored, so they can be used for comments. Add a
backslash ("\") to the beginning of the pattern if it starts with a hash.

• Each other line contains a single pattern.

Patterns have the same syntax and semantics as patterns used for fnmatch(3) without the
FNM_PATHNAME flag, except a pathname also matches a pattern if removing any number of the
final pathname components matches the pattern. For example, the pattern "foo*bar" matches
"fooasdfbar" and "foo/bar/baz/asdf" but not "foobarx".

−R
Swap two inputs; that is, show differences from index or on−disk file to tree contents.

−−relative[=<path>]
When run from a subdirectory of the project, it can be told to exclude changes outside the directory
and show pathnames relative to it with this option. When you are not in a subdirectory (e.g. in a bare
repository), you can name which subdirectory to make the output relative to by giving a <path> as an
argument.

−a, −−text
Treat all files as text.

−−ignore−cr−at−eol
Ignore carriage−return at the end of line when doing a comparison.

−−ignore−space−at−eol
Ignore changes in whitespace at EOL.

−b, −−ignore−space−change
Ignore changes in amount of whitespace. This ignores whitespace at line end, and considers all other
sequences of one or more whitespace characters to be equivalent.

−w, −−ignore−all−space
Ignore whitespace when comparing lines. This ignores differences even if one line has whitespace
where the other line has none.

−−ignore−blank−lines
Ignore changes whose lines are all blank.

−−inter−hunk−context=<lines>
Show the context between diff hunks, up to the specified number of lines, thereby fusing hunks that
are close to each other. Defaults to diff.interHunkContext or 0 if the config option is unset.

−W, −−function−context
Show whole surrounding functions of changes.

−−exit−code
Make the program exit with codes similar to diff(1). That is, it exits with 1 if there were differences
and 0 means no differences.

Git 2.25.1 02/08/2023 8

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

−−quiet
Disable all output of the program. Implies −−exit−code.

−−ext−diff
Allow an external diff helper to be executed. If you set an external diff driver with gitattributes(5),
you need to use this option with git-log(1) and friends.

−−no−ext−diff
Disallow external diff drivers.

−−textconv, −−no−textconv
Allow (or disallow) external text conversion filters to be run when comparing binary files. See
gitattributes(5) for details. Because textconv filters are typically a one−way conversion, the resulting
diff is suitable for human consumption, but cannot be applied. For this reason, textconv filters are
enabled by default only for git-diff(1) and git-log(1), but not for git-format-patch(1) or diff plumbing
commands.

−−ignore−submodules[=<when>]
Ignore changes to submodules in the diff generation. <when> can be either "none", "untracked",
"dirty" or "all", which is the default. Using "none" will consider the submodule modified when it
either contains untracked or modified files or its HEAD differs from the commit recorded in the
superproject and can be used to override any settings of the ignore option in git-config(1) or
gitmodules(5). When "untracked" is used submodules are not considered dirty when they only contain
untracked content (but they are still scanned for modified content). Using "dirty" ignores all changes to
the work tree of submodules, only changes to the commits stored in the superproject are shown (this
was the behavior until 1.7.0). Using "all" hides all changes to submodules.

−−src−prefix=<prefix>
Show the given source prefix instead of "a/".

−−dst−prefix=<prefix>
Show the given destination prefix instead of "b/".

−−no−prefix
Do not show any source or destination prefix.

−−line−prefix=<prefix>
Prepend an additional prefix to every line of output.

−−ita−invisible−in−index
By default entries added by "git add −N" appear as an existing empty file in "git diff" and a new file in
"git diff −−cached". This option makes the entry appear as a new file in "git diff" and non−existent in
"git diff −−cached". This option could be reverted with −−ita−visible−in−index. Both options are
experimental and could be removed in future.

For more detailed explanation on these common options, see also gitdiffcore(7).

<tree−ish>
The id of a tree object.

<path>...
If provided, the results are limited to a subset of files matching one of the provided pathspecs.

−r
recurse into sub−trees

−t
show tree entry itself as well as subtrees. Implies −r.

−−root
When −−root is specified the initial commit will be shown as a big creation event. This is equivalent to
a diff against the NULL tree.

Git 2.25.1 02/08/2023 9

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

−−stdin
When −−stdin is specified, the command does not take <tree−ish> arguments from the command line.
Instead, it reads lines containing either two <tree>, one <commit>, or a list of <commit> from its
standard input. (Use a single space as separator.)

When two trees are given, it compares the first tree with the second. When a single commit is given, it
compares the commit with its parents. The remaining commits, when given, are used as if they are
parents of the first commit.

When comparing two trees, the ID of both trees (separated by a space and terminated by a newline) is
printed before the difference. When comparing commits, the ID of the first (or only) commit, followed
by a newline, is printed.

The following flags further affect the behavior when comparing commits (but not trees).

−m
By default, git diff−tree −−stdin does not show differences for merge commits. With this flag, it shows
differences to that commit from all of its parents. See also −c.

−s
By default, git diff−tree −−stdin shows differences, either in machine−readable form (without −p) or
in patch form (with −p). This output can be suppressed. It is only useful with −v flag.

−v
This flag causes git diff−tree −−stdin to also show the commit message before the differences.

−−pretty[=<format>], −−format=<format>
Pretty−print the contents of the commit logs in a given format, where <format> can be one of oneline,
short, medium, full, fuller, reference, email, raw, format:<string> and tformat:<string>. When
<format> is none of the above, and has %placeholder in it, it acts as if −−pretty=tformat:<format>
were given.

See the "PRETTY FORMATS" section for some additional details for each format. When =<format>
part is omitted, it defaults to medium.

Note: you can specify the default pretty format in the repository configuration (see git-config(1)).

−−abbrev−commit
Instead of showing the full 40−byte hexadecimal commit object name, show only a partial prefix. Non
default number of digits can be specified with "−−abbrev=<n>" (which also modifies diff output, if it
is displayed).

This should make "−−pretty=oneline" a whole lot more readable for people using 80−column
terminals.

−−no−abbrev−commit
Show the full 40−byte hexadecimal commit object name. This negates −−abbrev−commit and those
options which imply it such as "−−oneline". It also overrides the log.abbrevCommit variable.

−−oneline
This is a shorthand for "−−pretty=oneline −−abbrev−commit" used together.

−−encoding=<encoding>
The commit objects record the encoding used for the log message in their encoding header; this option
can be used to tell the command to re−code the commit log message in the encoding preferred by the
user. For non plumbing commands this defaults to UTF−8. Note that if an object claims to be encoded
in X and we are outputting in X, we will output the object verbatim; this means that invalid sequences
in the original commit may be copied to the output.

−−expand−tabs=<n>, −−expand−tabs, −−no−expand−tabs

Git 2.25.1 02/08/2023 10

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

Perform a tab expansion (replace each tab with enough spaces to fill to the next display column that is
multiple of <n>) in the log message before showing it in the output. −−expand−tabs is a short−hand
for −−expand−tabs=8, and −−no−expand−tabs is a short−hand for −−expand−tabs=0, which
disables tab expansion.

By default, tabs are expanded in pretty formats that indent the log message by 4 spaces (i.e. medium,
which is the default, full, and fuller).

−−notes[=<ref>]
Show the notes (see git-notes(1)) that annotate the commit, when showing the commit log message.
This is the default for git log, git show and git whatchanged commands when there is no −−pretty,
−−format, or −−oneline option given on the command line.

By default, the notes shown are from the notes refs listed in the core.notesRef and notes.displayRef
variables (or corresponding environment overrides). See git-config(1) for more details.

With an optional <ref> argument, use the ref to find the notes to display. The ref can specify the full
refname when it begins with refs/notes/; when it begins with notes/, refs/ and otherwise refs/notes/ is
prefixed to form a full name of the ref.

Multiple −−notes options can be combined to control which notes are being displayed. Examples:
"−−notes=foo" will show only notes from "refs/notes/foo"; "−−notes=foo −−notes" will show both
notes from "refs/notes/foo" and from the default notes ref(s).

−−no−notes
Do not show notes. This negates the above −−notes option, by resetting the list of notes refs from
which notes are shown. Options are parsed in the order given on the command line, so e.g. "−−notes
−−notes=foo −−no−notes −−notes=bar" will only show notes from "refs/notes/bar".

−−show−notes[=<ref>], −−[no−]standard−notes
These options are deprecated. Use the above −−notes/−−no−notes options instead.

−−show−signature
Check the validity of a signed commit object by passing the signature to gpg −−verify and show the
output.

−−no−commit−id
git diff−tree outputs a line with the commit ID when applicable. This flag suppressed the commit ID
output.

−c
This flag changes the way a merge commit is displayed (which means it is useful only when the
command is given one <tree−ish>, or −−stdin). It shows the differences from each of the parents to
the merge result simultaneously instead of showing pairwise diff between a parent and the result one at
a time (which is what the −m option does). Furthermore, it lists only files which were modified from
all parents.

−−cc
This flag changes the way a merge commit patch is displayed, in a similar way to the −c option. It
implies the −c and −p options and further compresses the patch output by omitting uninteresting hunks
whose the contents in the parents have only two variants and the merge result picks one of them
without modification. When all hunks are uninteresting, the commit itself and the commit log message
is not shown, just like in any other "empty diff" case.

−−combined−all−paths
This flag causes combined diffs (used for merge commits) to list the name of the file from all parents.
It thus only has effect when −c or −−cc are specified, and is likely only useful if filename changes are
detected (i.e. when either rename or copy detection have been requested).

−−always

Git 2.25.1 02/08/2023 11

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

Show the commit itself and the commit log message even if the diff itself is empty.

PRETTY FORMATS
If the commit is a merge, and if the pretty−format is not oneline, email or raw, an additional line is inserted
before the Author: line. This line begins with "Merge: " and the hashes of ancestral commits are printed,
separated by spaces. Note that the listed commits may not necessarily be the list of the direct parent
commits if you have limited your view of history: for example, if you are only interested in changes related
to a certain directory or file.

There are several built−in formats, and you can define additional formats by setting a pretty.<name> config
option to either another format name, or a format: string, as described below (see git-config(1)). Here are
the details of the built−in formats:

• oneline

<hash> <title line>

This is designed to be as compact as possible.

• short

commit <hash>
Author: <author>

<title line>

• medium

commit <hash>
Author: <author>
Date: <author date>

<title line>

<full commit message>

• full

commit <hash>
Author: <author>
Commit: <committer>

<title line>

<full commit message>

• fuller

commit <hash>
Author: <author>
AuthorDate: <author date>
Commit: <committer>
CommitDate: <committer date>

<title line>

<full commit message>

Git 2.25.1 02/08/2023 12

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

• reference

<abbrev hash> (<title line>, <short author date>)

This format is used to refer to another commit in a commit message and is the same as
−−pretty='format:%C(auto)%h (%s, %ad)'. By default, the date is formatted with
−−date=short unless another −−date option is explicitly specified. As with any format: with
format placeholders, its output is not affected by other options like −−decorate and
−−walk−reflogs.

• email

From <hash> <date>
From: <author>
Date: <author date>
Subject: [PATCH] <title line>

<full commit message>

• raw

The raw format shows the entire commit exactly as stored in the commit object. Notably, the hashes
are displayed in full, regardless of whether −−abbrev or −−no−abbrev are used, and parents
information show the true parent commits, without taking grafts or history simplification into
account. Note that this format affects the way commits are displayed, but not the way the diff is
shown e.g. with git log −−raw. To get full object names in a raw diff format, use −−no−abbrev.

• format:<string>

The format:<string> format allows you to specify which information you want to show. It works a
little bit like printf format, with the notable exception that you get a newline with %n instead of \n.

E.g, format:"The author of %h was %an, %ar%nThe title was >>%s<<%n" would show
something like this:

The author of fe6e0ee was Junio C Hamano, 23 hours ago
The title was >>t4119: test autocomputing −p<n> for traditional diff input.<<

The placeholders are:

• Placeholders that expand to a single literal character:

%n
newline

%%
a raw %

%x00
print a byte from a hex code

• Placeholders that affect formatting of later placeholders:

%Cred
switch color to red

%Cgreen
switch color to green

%Cblue
switch color to blue

Git 2.25.1 02/08/2023 13

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

%Creset
reset color

%C(...)
color specification, as described under Values in the "CONFIGURATION FILE" section of
git-config(1). By default, colors are shown only when enabled for log output (by color.diff,
color.ui, or −−color, and respecting the auto settings of the former if we are going to a
terminal). %C(auto,...) is accepted as a historical synonym for the default (e.g.,
%C(auto,red)). Specifying %C(always,...) will show the colors even when color is not
otherwise enabled (though consider just using −−color=always to enable color for the whole
output, including this format and anything else git might color). auto alone (i.e. %C(auto))
will turn on auto coloring on the next placeholders until the color is switched again.

%m
left (<), right (>) or boundary (−) mark

%w([<w>[,<i1>[,<i2>]]])
switch line wrapping, like the −w option of git-shortlog(1).

%<(<N>[,trunc|ltrunc|mtrunc])
make the next placeholder take at least N columns, padding spaces on the right if necessary.
Optionally truncate at the beginning (ltrunc), the middle (mtrunc) or the end (trunc) if the
output is longer than N columns. Note that truncating only works correctly with N >= 2.

%<|(<N>)
make the next placeholder take at least until Nth columns, padding spaces on the right if
necessary

%>(<N>), %>|(<N>)
similar to %<(<N>), %<|(<N>) respectively, but padding spaces on the left

%>>(<N>), %>>|(<N>)
similar to %>(<N>), %>|(<N>) respectively, except that if the next placeholder takes more
spaces than given and there are spaces on its left, use those spaces

%><(<N>), %><|(<N>)
similar to %<(<N>), %<|(<N>) respectively, but padding both sides (i.e. the text is
centered)

• Placeholders that expand to information extracted from the commit:

%H
commit hash

%h
abbreviated commit hash

%T
tree hash

%t
abbreviated tree hash

%P
parent hashes

%p
abbreviated parent hashes

%an
author name

%aN
author name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

Git 2.25.1 02/08/2023 14

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

%ae
author email

%aE
author email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%al
author email local−part (the part before the @ sign)

%aL
author local−part (see %al) respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ad
author date (format respects −−date= option)

%aD
author date, RFC2822 style

%ar
author date, relative

%at
author date, UNIX timestamp

%ai
author date, ISO 8601−like format

%aI
author date, strict ISO 8601 format

%as
author date, short format (YYYY−MM−DD)

%cn
committer name

%cN
committer name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%ce
committer email

%cE
committer email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%cl
author email local−part (the part before the @ sign)

%cL
author local−part (see %cl) respecting .mailmap, see git-shortlog(1) or git-blame(1))

%cd
committer date (format respects −−date= option)

%cD
committer date, RFC2822 style

%cr
committer date, relative

%ct
committer date, UNIX timestamp

%ci
committer date, ISO 8601−like format

%cI
committer date, strict ISO 8601 format

Git 2.25.1 02/08/2023 15

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

%cs
committer date, short format (YYYY−MM−DD)

%d
ref names, like the −−decorate option of git-log(1)

%D
ref names without the " (", ")" wrapping.

%S
ref name given on the command line by which the commit was reached (like git log
−−source), only works with git log

%e
encoding

%s
subject

%f
sanitized subject line, suitable for a filename

%b
body

%B
raw body (unwrapped subject and body)

%N
commit notes

%GG
raw verification message from GPG for a signed commit

%G?
show "G" for a good (valid) signature, "B" for a bad signature, "U" for a good signature with
unknown validity, "X" for a good signature that has expired, "Y" for a good signature made
by an expired key, "R" for a good signature made by a revoked key, "E" if the signature
cannot be checked (e.g. missing key) and "N" for no signature

%GS
show the name of the signer for a signed commit

%GK
show the key used to sign a signed commit

%GF
show the fingerprint of the key used to sign a signed commit

%GP
show the fingerprint of the primary key whose subkey was used to sign a signed commit

%gD
reflog selector, e.g., refs/stash@{1} or refs/stash@{2 minutes ago}; the format follows the
rules described for the −g option. The portion before the @ is the refname as given on the
command line (so git log −g refs/heads/master would yield refs/heads/master@{0}).

%gd
shortened reflog selector; same as %gD, but the refname portion is shortened for human
readability (so refs/heads/master becomes just master).

%gn
reflog identity name

%gN
reflog identity name (respecting .mailmap, see git-shortlog(1) or git-blame(1))

Git 2.25.1 02/08/2023 16

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

%ge
reflog identity email

%gE
reflog identity email (respecting .mailmap, see git-shortlog(1) or git-blame(1))

%gs
reflog subject

%(trailers[:options])
display the trailers of the body as interpreted by git-interpret-trailers(1). The trailers string
may be followed by a colon and zero or more comma−separated options:

• key=<K>: only show trailers with specified key. Matching is done
case−insensitively and trailing colon is optional. If option is given multiple times
trailer lines matching any of the keys are shown. This option automatically enables
the only option so that non−trailer lines in the trailer block are hidden. If that is not
desired it can be disabled with only=false. E.g., %(trailers:key=Reviewed−by)
shows trailer lines with key Reviewed−by.

• only[=val]: select whether non−trailer lines from the trailer block should be
included. The only keyword may optionally be followed by an equal sign and one of
true, on, yes to omit or false, off, no to show the non−trailer lines. If option is given
without value it is enabled. If given multiple times the last value is used.

• separator=<SEP>: specify a separator inserted between trailer lines. When this
option is not given each trailer line is terminated with a line feed character. The
string SEP may contain the literal formatting codes described above. To use comma
as separator one must use %x2C as it would otherwise be parsed as next option. If
separator option is given multiple times only the last one is used. E.g.,
%(trailers:key=Ticket,separator=%x2C) shows all trailer lines whose key is
"Ticket" separated by a comma and a space.

• unfold[=val]: make it behave as if interpret−trailer’s −−unfold option was given. In
same way as to for only it can be followed by an equal sign and explicit value. E.g.,
%(trailers:only,unfold=true) unfolds and shows all trailer lines.

• valueonly[=val]: skip over the key part of the trailer line and only show the value
part. Also this optionally allows explicit value.

Note
Some placeholders may depend on other options given to the revision traversal engine. For example, the %g*

reflog options will insert an empty string unless we are traversing reflog entries (e.g., by git log −g). The %d and

%D placeholders will use the "short" decoration format if −−decorate was not already provided on the command

line.

If you add a + (plus sign) after % of a placeholder, a line−feed is inserted immediately before the expansion if and only

if the placeholder expands to a non−empty string.

If you add a − (minus sign) after % of a placeholder, all consecutive line−feeds immediately preceding the expansion

are deleted if and only if the placeholder expands to an empty string.

If you add a ‘ ‘ (space) after % of a placeholder, a space is inserted immediately before the expansion if and only if the

placeholder expands to a non−empty string.

• tformat:

The tformat: format works exactly like format:, except that it provides "terminator" semantics
instead of "separator" semantics. In other words, each commit has the message terminator character
(usually a newline) appended, rather than a separator placed between entries. This means that the

Git 2.25.1 02/08/2023 17

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

final entry of a single−line format will be properly terminated with a new line, just as the "oneline"
format does. For example:

$ git log −2 −−pretty=format:%h 4da45bef \
| perl −pe '$_ .= " −− NO NEWLINE\n" unless /\n/'

4da45be
7134973 −− NO NEWLINE

$ git log −2 −−pretty=tformat:%h 4da45bef \
| perl −pe '$_ .= " −− NO NEWLINE\n" unless /\n/'

4da45be
7134973

In addition, any unrecognized string that has a % in it is interpreted as if it has tformat: in front of
it. For example, these two are equivalent:

$ git log −2 −−pretty=tformat:%h 4da45bef
$ git log −2 −−pretty=%h 4da45bef

RAW OUTPUT FORMAT
The raw output format from "git−diff−index", "git−diff−tree", "git−diff−files" and "git diff −−raw" are very
similar.

These commands all compare two sets of things; what is compared differs:

git−diff−index <tree−ish>
compares the <tree−ish> and the files on the filesystem.

git−diff−index −−cached <tree−ish>
compares the <tree−ish> and the index.

git−diff−tree [−r] <tree−ish−1> <tree−ish−2> [<pattern>...]
compares the trees named by the two arguments.

git−diff−files [<pattern>...]
compares the index and the files on the filesystem.

The "git−diff−tree" command begins its output by printing the hash of what is being compared. After that,
all the commands print one output line per changed file.

An output line is formatted this way:

in−place edit :100644 100644 bcd1234 0123456 M file0
copy−edit :100644 100644 abcd123 1234567 C68 file1 file2
rename−edit :100644 100644 abcd123 1234567 R86 file1 file3
create :000000 100644 0000000 1234567 A file4
delete :100644 000000 1234567 0000000 D file5
unmerged :000000 000000 0000000 0000000 U file6

That is, from the left to the right:

1. a colon.

2. mode for "src"; 000000 if creation or unmerged.

3. a space.

Git 2.25.1 02/08/2023 18

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

4. mode for "dst"; 000000 if deletion or unmerged.

5. a space.

6. sha1 for "src"; 0{40} if creation or unmerged.

7. a space.

8. sha1 for "dst"; 0{40} if creation, unmerged or "look at work tree".

9. a space.

10. status, followed by optional "score" number.

11. a tab or a NUL when −z option is used.

12. path for "src"

13. a tab or a NUL when −z option is used; only exists for C or R.

14. path for "dst"; only exists for C or R.

15. an LF or a NUL when −z option is used, to terminate the record.

Possible status letters are:

• A: addition of a file

• C: copy of a file into a new one

• D: deletion of a file

• M: modification of the contents or mode of a file

• R: renaming of a file

• T: change in the type of the file

• U: file is unmerged (you must complete the merge before it can be committed)

• X: "unknown" change type (most probably a bug, please report it)

Status letters C and R are always followed by a score (denoting the percentage of similarity between the
source and target of the move or copy). Status letter M may be followed by a score (denoting the percentage
of dissimilarity) for file rewrites.

<sha1> is shown as all 0’s if a file is new on the filesystem and it is out of sync with the index.

Example:

:100644 100644 5be4a4a 0000000 M file.c

Without the −z option, pathnames with "unusual" characters are quoted as explained for the configuration
variable core.quotePath (see git-config(1)). Using −z the filename is output verbatim and the line is
terminated by a NUL byte.

DIFF FORMAT FOR MERGES
"git−diff−tree", "git−diff−files" and "git−diff −−raw" can take −c or −−cc option to generate diff output also
for merge commits. The output differs from the format described above in the following way:

1. there is a colon for each parent

2. there are more "src" modes and "src" sha1

3. status is concatenated status characters for each parent

4. no optional "score" number

Git 2.25.1 02/08/2023 19

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

5. tab−separated pathname(s) of the file

For −c and −−cc, only the destination or final path is shown even if the file was renamed on any side of
history. With −−combined−all−paths, the name of the path in each parent is shown followed by the name
of the path in the merge commit.

Examples for −c and −−cc without −−combined−all−paths:

::100644 100644 100644 fabadb8 cc95eb0 4866510 MM desc.c
::100755 100755 100755 52b7a2d 6d1ac04 d2ac7d7 RM bar.sh
::100644 100644 100644 e07d6c5 9042e82 ee91881 RR phooey.c

Examples when −−combined−all−paths added to either −c or −−cc:

::100644 100644 100644 fabadb8 cc95eb0 4866510 MM desc.c desc.c desc.c
::100755 100755 100755 52b7a2d 6d1ac04 d2ac7d7 RM foo.sh bar.sh bar.sh
::100644 100644 100644 e07d6c5 9042e82 ee91881 RR fooey.c fuey.c phooey.c

Note that combined diff lists only files which were modified from all parents.

GENERATING PATCH TEXT WITH −P
Running git-diff(1), git-log(1), git-show(1), git-diff-index(1), git-diff-tree(1), or git-diff-files(1) with the
−p option produces patch text. You can customize the creation of patch text via the
GIT_EXTERNAL_DIFF and the GIT_DIFF_OPTS environment variables.

What the −p option produces is slightly different from the traditional diff format:

1. It is preceded with a "git diff" header that looks like this:

diff −−git a/file1 b/file2

The a/ and b/ filenames are the same unless rename/copy is inv olved. Especially, even for a
creation or a deletion, /dev/null is not used in place of the a/ or b/ filenames.

When rename/copy is inv olved, file1 and file2 show the name of the source file of the
rename/copy and the name of the file that rename/copy produces, respectively.

2. It is followed by one or more extended header lines:

old mode <mode>
new mode <mode>
deleted file mode <mode>
new file mode <mode>
copy from <path>
copy to <path>
rename from <path>
rename to <path>
similarity index <number>
dissimilarity index <number>
index <hash>..<hash> <mode>

File modes are printed as 6−digit octal numbers including the file type and file permission bits.

Path names in extended headers do not include the a/ and b/ prefixes.

Git 2.25.1 02/08/2023 20

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

The similarity index is the percentage of unchanged lines, and the dissimilarity index is the
percentage of changed lines. It is a rounded down integer, followed by a percent sign. The
similarity index value of 100% is thus reserved for two equal files, while 100% dissimilarity
means that no line from the old file made it into the new one.

The index line includes the blob object names before and after the change. The <mode> is
included if the file mode does not change; otherwise, separate lines indicate the old and the new
mode.

3. Pathnames with "unusual" characters are quoted as explained for the configuration variable
core.quotePath (see git-config(1)).

4. All the file1 files in the output refer to files before the commit, and all the file2 files refer to files
after the commit. It is incorrect to apply each change to each file sequentially. For example, this
patch will swap a and b:

diff −−git a/a b/b
rename from a
rename to b
diff −−git a/b b/a
rename from b
rename to a

COMBINED DIFF FORMAT
Any diff−generating command can take the −c or −−cc option to produce a combined diff when showing a
merge. This is the default format when showing merges with git-diff(1) or git-show(1). Note also that you
can give the −m option to any of these commands to force generation of diffs with individual parents of a
merge.

A "combined diff" format looks like this:

diff −−combined describe.c
index fabadb8,cc95eb0..4866510
−−− a/describe.c
+++ b/describe.c
@@@ −98,20 −98,12 +98,20 @@@

return (a_date > b_date) ? −1 : (a_date == b_date) ? 0 : 1;
}

− static void describe(char *arg)
−static void describe(struct commit *cmit, int last_one)
++static void describe(char *arg, int last_one)
{
+ unsigned char sha1[20];
+ struct commit *cmit;

struct commit_list *list;
static int initialized = 0;
struct commit_name *n;

+ if (get_sha1(arg, sha1) < 0)
+ usage(describe_usage);
+ cmit = lookup_commit_reference(sha1);
+ if (!cmit)
+ usage(describe_usage);
+

if (!initialized) {

Git 2.25.1 02/08/2023 21

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

initialized = 1;
for_each_ref(get_name);

1. It is preceded with a "git diff" header, that looks like this (when the −c option is used):

diff −−combined file

or like this (when the −−cc option is used):

diff −−cc file

2. It is followed by one or more extended header lines (this example shows a merge with two
parents):

index <hash>,<hash>..<hash>
mode <mode>,<mode>..<mode>
new file mode <mode>
deleted file mode <mode>,<mode>

The mode <mode>,<mode>..<mode> line appears only if at least one of the <mode> is different
from the rest. Extended headers with information about detected contents movement (renames
and copying detection) are designed to work with diff of two <tree−ish> and are not used by
combined diff format.

3. It is followed by two−line from−file/to−file header

−−− a/file
+++ b/file

Similar to two−line header for traditional unified diff format, /dev/null is used to signal created
or deleted files.

However, if the −−combined−all−paths option is provided, instead of a two−line from−file/to−file
you get a N+1 line from−file/to−file header, where N is the number of parents in the merge
commit

−−− a/file
−−− a/file
−−− a/file
+++ b/file

This extended format can be useful if rename or copy detection is active, to allow you to see the
original name of the file in different parents.

4. Chunk header format is modified to prevent people from accidentally feeding it to patch −p1.
Combined diff format was created for review of merge commit changes, and was not meant to be
applied. The change is similar to the change in the extended index header:

@@@ <from−file−range> <from−file−range> <to−file−range> @@@

There are (number of parents + 1) @ characters in the chunk header for combined diff format.

Unlike the traditional unified diff format, which shows two files A and B with a single column that has −
(minus — appears in A but removed in B), + (plus — missing in A but added to B), or " " (space —
unchanged) prefix, this format compares two or more files file1, file2,... with one file X, and shows how X

Git 2.25.1 02/08/2023 22

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

differs from each of fileN. One column for each of fileN is prepended to the output line to note how X’s line
is different from it.

A − character in the column N means that the line appears in fileN but it does not appear in the result. A +
character in the column N means that the line appears in the result, and fileN does not have that line (in
other words, the line was added, from the point of view of that parent).

In the above example output, the function signature was changed from both files (hence two − removals
from both file1 and file2, plus ++ to mean one line that was added does not appear in either file1 or file2).
Also eight other lines are the same from file1 but do not appear in file2 (hence prefixed with +).

When shown by git diff−tree −c, it compares the parents of a merge commit with the merge result (i.e.
file1..fileN are the parents). When shown by git diff−files −c, it compares the two unresolved merge parents
with the working tree file (i.e. file1 is stage 2 aka "our version", file2 is stage 3 aka "their version").

OTHER DIFF FORMATS
The −−summary option describes newly added, deleted, renamed and copied files. The −−stat option adds
diffstat(1) graph to the output. These options can be combined with other options, such as −p, and are
meant for human consumption.

When showing a change that involves a rename or a copy, −−stat output formats the pathnames compactly
by combining common prefix and suffix of the pathnames. For example, a change that moves
arch/i386/Makefile to arch/x86/Makefile while modifying 4 lines will be shown like this:

arch/{i386 => x86}/Makefile | 4 +−−

The −−numstat option gives the diffstat(1) information but is designed for easier machine consumption.
An entry in −−numstat output looks like this:

1 2 README
3 1 arch/{i386 => x86}/Makefile

That is, from left to right:

1. the number of added lines;

2. a tab;

3. the number of deleted lines;

4. a tab;

5. pathname (possibly with rename/copy information);

6. a newline.

When −z output option is in effect, the output is formatted this way:

1 2 README NUL
3 1 NUL arch/i386/Makefile NUL arch/x86/Makefile NUL

That is:

1. the number of added lines;

2. a tab;

Git 2.25.1 02/08/2023 23

GIT−DIFF−TREE(1) Git Manual GIT−DIFF−TREE(1)

3. the number of deleted lines;

4. a tab;

5. a NUL (only exists if renamed/copied);

6. pathname in preimage;

7. a NUL (only exists if renamed/copied);

8. pathname in postimage (only exists if renamed/copied);

9. a NUL.

The extra NUL before the preimage path in renamed case is to allow scripts that read the output to tell if
the current record being read is a single−path record or a rename/copy record without reading ahead. After
reading added and deleted lines, reading up to NUL would yield the pathname, but if that is NUL, the
record will show two paths.

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 24

