
GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

NAME
git-commit − Record changes to the repository

SYNOPSIS
git commit [−a | −−interactive | −−patch] [−s] [−v] [−u<mode>] [−−amend]

[−−dry−run] [(−c | −C | −−fixup | −−squash) <commit>]
[−F <file> | −m <msg>] [−−reset−author] [−−allow−empty]
[−−allow−empty−message] [−−no−verify] [−e] [−−author=<author>]
[−−date=<date>] [−−cleanup=<mode>] [−−[no−]status]
[−i | −o] [−−pathspec−from−file=<file> [−−pathspec−file−nul]]
[−S[<keyid>]] [−−] [<pathspec>...]

DESCRIPTION
Create a new commit containing the current contents of the index and the given log message describing the
changes. The new commit is a direct child of HEAD, usually the tip of the current branch, and the branch is
updated to point to it (unless no branch is associated with the working tree, in which case HEAD is
"detached" as described in git-checkout(1)).

The content to be committed can be specified in several ways:

1. by using git-add(1) to incrementally "add" changes to the index before using the commit

command (Note: even modified files must be "added");

2. by using git-rm(1) to remove files from the working tree and the index, again before using the
commit command;

3. by listing files as arguments to the commit command (without −−interactive or −−patch switch),
in which case the commit will ignore changes staged in the index, and instead record the current
content of the listed files (which must already be known to Git);

4. by using the −a switch with the commit command to automatically "add" changes from all known
files (i.e. all files that are already listed in the index) and to automatically "rm" files in the index
that have been removed from the working tree, and then perform the actual commit;

5. by using the −−interactive or −−patch switches with the commit command to decide one by one
which files or hunks should be part of the commit in addition to contents in the index, before
finalizing the operation. See the “Interactive Mode” section of git-add(1) to learn how to operate
these modes.

The −−dry−run option can be used to obtain a summary of what is included by any of the above for the
next commit by giving the same set of parameters (options and paths).

If you make a commit and then find a mistake immediately after that, you can recover from it with git reset.

OPTIONS
−a, −−all

Tell the command to automatically stage files that have been modified and deleted, but new files you
have not told Git about are not affected.

−p, −−patch
Use the interactive patch selection interface to chose which changes to commit. See git-add(1) for
details.

−C <commit>, −−reuse−message=<commit>
Take an existing commit object, and reuse the log message and the authorship information (including
the timestamp) when creating the commit.

−c <commit>, −−reedit−message=<commit>
Like −C, but with −c the editor is invoked, so that the user can further edit the commit message.

−−fixup=<commit>

Git 2.25.1 02/08/2023 1

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

Construct a commit message for use with rebase −−autosquash. The commit message will be the
subject line from the specified commit with a prefix of "fixup! ". See git-rebase(1) for details.

−−squash=<commit>
Construct a commit message for use with rebase −−autosquash. The commit message subject line is
taken from the specified commit with a prefix of "squash! ". Can be used with additional commit
message options (−m/−c/−C/−F). See git-rebase(1) for details.

−−reset−author
When used with −C/−c/−−amend options, or when committing after a conflicting cherry−pick, declare
that the authorship of the resulting commit now belongs to the committer. This also renews the author
timestamp.

−−short
When doing a dry−run, give the output in the short−format. See git-status(1) for details. Implies
−−dry−run.

−−branch
Show the branch and tracking info even in short−format.

−−porcelain
When doing a dry−run, give the output in a porcelain−ready format. See git-status(1) for details.
Implies −−dry−run.

−−long
When doing a dry−run, give the output in the long−format. Implies −−dry−run.

−z, −−null
When showing short or porcelain status output, print the filename verbatim and terminate the entries
with NUL, instead of LF. If no format is given, implies the −−porcelain output format. Without the −z

option, filenames with "unusual" characters are quoted as explained for the configuration variable
core.quotePath (see git-config(1)).

−F <file>, −−file=<file>
Take the commit message from the given file. Use − to read the message from the standard input.

−−author=<author>
Override the commit author. Specify an explicit author using the standard A U Thor

<author@example.com> format. Otherwise <author> is assumed to be a pattern and is used to search
for an existing commit by that author (i.e. rev−list −−all −i −−author=<author>); the commit author is
then copied from the first such commit found.

−−date=<date>
Override the author date used in the commit.

−m <msg>, −−message=<msg>
Use the given <msg> as the commit message. If multiple −m options are given, their values are
concatenated as separate paragraphs.

The −m option is mutually exclusive with −c, −C, and −F.

−t <file>, −−template=<file>
When editing the commit message, start the editor with the contents in the given file. The
commit.template configuration variable is often used to give this option implicitly to the command.
This mechanism can be used by projects that want to guide participants with some hints on what to
write in the message in what order. If the user exits the editor without editing the message, the commit
is aborted. This has no effect when a message is given by other means, e.g. with the −m or −F options.

−s, −−signoff
Add Signed−off−by line by the committer at the end of the commit log message. The meaning of a
signoff depends on the project, but it typically certifies that committer has the rights to submit this
work under the same license and agrees to a Developer Certificate of Origin (see

Git 2.25.1 02/08/2023 2

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

http://developercertificate.org/ for more information).

−n, −−no−verify
This option bypasses the pre−commit and commit−msg hooks. See also githooks(5).

−−allow−empty
Usually recording a commit that has the exact same tree as its sole parent commit is a mistake, and the
command prevents you from making such a commit. This option bypasses the safety, and is primarily
for use by foreign SCM interface scripts.

−−allow−empty−message
Like −−allow−empty this command is primarily for use by foreign SCM interface scripts. It allows
you to create a commit with an empty commit message without using plumbing commands like git-

commit-tree(1).

−−cleanup=<mode>
This option determines how the supplied commit message should be cleaned up before committing.
The <mode> can be strip, whitespace, verbatim, scissors or default.

strip
Strip leading and trailing empty lines, trailing whitespace, commentary and collapse consecutive
empty lines.

whitespace
Same as strip except #commentary is not removed.

verbatim
Do not change the message at all.

scissors
Same as whitespace except that everything from (and including) the line found below is
truncated, if the message is to be edited. "#" can be customized with core.commentChar.

−−−−−−−−−−−−−−−−−−−−−−−− >8 −−−−−−−−−−−−−−−−−−−−−−−−

default
Same as strip if the message is to be edited. Otherwise whitespace.

The default can be changed by the commit.cleanup configuration variable (see git-config(1)).

−e, −−edit
The message taken from file with −F, command line with −m, and from commit object with −C are
usually used as the commit log message unmodified. This option lets you further edit the message
taken from these sources.

−−no−edit
Use the selected commit message without launching an editor. For example, git commit −−amend

−−no−edit amends a commit without changing its commit message.

−−amend
Replace the tip of the current branch by creating a new commit. The recorded tree is prepared as usual
(including the effect of the −i and −o options and explicit pathspec), and the message from the original
commit is used as the starting point, instead of an empty message, when no other message is specified
from the command line via options such as −m, −F, −c, etc. The new commit has the same parents and
author as the current one (the −−reset−author option can countermand this).

It is a rough equivalent for:

$ git reset −−soft HEADˆ
$... do something else to come up with the right tree ...
$ git commit −c ORIG_HEAD

Git 2.25.1 02/08/2023 3

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

but can be used to amend a merge commit.

You should understand the implications of rewriting history if you amend a commit that has already
been published. (See the "RECOVERING FROM UPSTREAM REBASE" section in git-rebase(1).)

−−no−post−rewrite
Bypass the post−rewrite hook.

−i, −−include
Before making a commit out of staged contents so far, stage the contents of paths given on the
command line as well. This is usually not what you want unless you are concluding a conflicted
merge.

−o, −−only
Make a commit by taking the updated working tree contents of the paths specified on the command
line, disregarding any contents that have been staged for other paths. This is the default mode of
operation of git commit if any paths are given on the command line, in which case this option can be
omitted. If this option is specified together with −−amend, then no paths need to be specified, which
can be used to amend the last commit without committing changes that have already been staged. If
used together with −−allow−empty paths are also not required, and an empty commit will be created.

−−pathspec−from−file=<file>
Pathspec is passed in <file> instead of commandline args. If <file> is exactly − then standard input is
used. Pathspec elements are separated by LF or CR/LF. Pathspec elements can be quoted as explained
for the configuration variable core.quotePath (see git-config(1)). See also −−pathspec−file−nul and
global −−literal−pathspecs.

−−pathspec−file−nul
Only meaningful with −−pathspec−from−file. Pathspec elements are separated with NUL character
and all other characters are taken literally (including newlines and quotes).

−u[<mode>], −−untracked−files[=<mode>]
Show untracked files.

The mode parameter is optional (defaults to all), and is used to specify the handling of untracked files;
when −u is not used, the default is normal, i.e. show untracked files and directories.

The possible options are:

• no − Show no untracked files

• normal − Shows untracked files and directories

• all − Also shows individual files in untracked directories.

The default can be changed using the status.showUntrackedFiles configuration variable documented in
git-config(1).

−v, −−verbose
Show unified diff between the HEAD commit and what would be committed at the bottom of the
commit message template to help the user describe the commit by reminding what changes the commit
has. Note that this diff output doesn’t hav e its lines prefixed with #. This diff will not be a part of the
commit message. See the commit.verbose configuration variable in git-config(1).

If specified twice, show in addition the unified diff between what would be committed and the
worktree files, i.e. the unstaged changes to tracked files.

−q, −−quiet
Suppress commit summary message.

−−dry−run
Do not create a commit, but show a list of paths that are to be committed, paths with local changes that

Git 2.25.1 02/08/2023 4

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

will be left uncommitted and paths that are untracked.

−−status
Include the output of git-status(1) in the commit message template when using an editor to prepare
the commit message. Defaults to on, but can be used to override configuration variable commit.status.

−−no−status
Do not include the output of git-status(1) in the commit message template when using an editor to
prepare the default commit message.

−S[<keyid>], −−gpg−sign[=<keyid>]
GPG−sign commits. The keyid argument is optional and defaults to the committer identity; if
specified, it must be stuck to the option without a space.

−−no−gpg−sign
Countermand commit.gpgSign configuration variable that is set to force each and every commit to be
signed.

−−
Do not interpret any more arguments as options.

<pathspec>...
When pathspec is given on the command line, commit the contents of the files that match the pathspec
without recording the changes already added to the index. The contents of these files are also staged
for the next commit on top of what have been staged before.

For more details, see the pathspec entry in gitglossary(7).

EXAMPLES
When recording your own work, the contents of modified files in your working tree are temporarily stored
to a staging area called the "index" with git add. A file can be reverted back, only in the index but not in the
working tree, to that of the last commit with git restore −−staged <file>, which effectively reverts git add

and prevents the changes to this file from participating in the next commit. After building the state to be
committed incrementally with these commands, git commit (without any pathname parameter) is used to
record what has been staged so far. This is the most basic form of the command. An example:

$ edit hello.c
$ git rm goodbye.c
$ git add hello.c
$ git commit

Instead of staging files after each individual change, you can tell git commit to notice the changes to the
files whose contents are tracked in your working tree and do corresponding git add and git rm for you.
That is, this example does the same as the earlier example if there is no other change in your working tree:

$ edit hello.c
$ rm goodbye.c
$ git commit −a

The command git commit −a first looks at your working tree, notices that you have modified hello.c and
removed goodbye.c, and performs necessary git add and git rm for you.

After staging changes to many files, you can alter the order the changes are recorded in, by giving
pathnames to git commit. When pathnames are given, the command makes a commit that only records the
changes made to the named paths:

$ edit hello.c hello.h

Git 2.25.1 02/08/2023 5

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

$ git add hello.c hello.h
$ edit Makefile
$ git commit Makefile

This makes a commit that records the modification to Makefile. The changes staged for hello.c and hello.h

are not included in the resulting commit. However, their changes are not lost — they are still staged and
merely held back. After the above sequence, if you do:

$ git commit

this second commit would record the changes to hello.c and hello.h as expected.

After a merge (initiated by git merge or git pull) stops because of conflicts, cleanly merged paths are
already staged to be committed for you, and paths that conflicted are left in unmerged state. You would
have to first check which paths are conflicting with git status and after fixing them manually in your
working tree, you would stage the result as usual with git add:

$ git status | grep unmerged
unmerged: hello.c
$ edit hello.c
$ git add hello.c

After resolving conflicts and staging the result, git ls−files −u would stop mentioning the conflicted path.
When you are done, run git commit to finally record the merge:

$ git commit

As with the case to record your own changes, you can use −a option to save typing. One difference is that
during a merge resolution, you cannot use git commit with pathnames to alter the order the changes are
committed, because the merge should be recorded as a single commit. In fact, the command refuses to run
when given pathnames (but see −i option).

COMMIT INFORMATION
Author and committer information is taken from the following environment variables, if set:

GIT_AUTHOR_NAME
GIT_AUTHOR_EMAIL
GIT_AUTHOR_DATE
GIT_COMMITTER_NAME
GIT_COMMITTER_EMAIL
GIT_COMMITTER_DATE

(nb "<", ">" and "\n"s are stripped)

The author and committer names are by convention some form of a personal name (that is, the name by
which other humans refer to you), although Git does not enforce or require any particular form. Arbitrary
Unicode may be used, subject to the constraints listed above. This name has no effect on authentication; for
that, see the credential.username variable in git-config(1).

In case (some of) these environment variables are not set, the information is taken from the configuration
items user.name and user.email, or, if not present, the environment variable EMAIL, or, if that is not set,

Git 2.25.1 02/08/2023 6

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

system user name and the hostname used for outgoing mail (taken from /etc/mailname and falling back to
the fully qualified hostname when that file does not exist).

The author.name and committer.name and their corresponding email options override user.name and
user.email if set and are overridden themselves by the environment variables.

The typical usage is to set just the user.name and user.email variables; the other options are provided for
more complex use cases.

DATE FORMATS
The GIT_AUTHOR_DATE, GIT_COMMITTER_DATE environment variables and the −−date option
support the following date formats:

Git internal format
It is <unix timestamp> <time zone offset>, where <unix timestamp> is the number of seconds since
the UNIX epoch. <time zone offset> is a positive or neg ative offset from UTC. For example CET
(which is 1 hour ahead of UTC) is +0100.

RFC 2822
The standard email format as described by RFC 2822, for example Thu, 07 Apr 2005 22:13:13

+0200.

ISO 8601
Time and date specified by the ISO 8601 standard, for example 2005−04−07T22:13:13. The parser
accepts a space instead of the T character as well.

Note
In addition, the date part is accepted in the following formats: YYYY.MM.DD, MM/DD/YYYY and

DD.MM.YYYY.

DISCUSSION
Though not required, it’s a good idea to begin the commit message with a single short (less than 50
character) line summarizing the change, followed by a blank line and then a more thorough description.
The text up to the first blank line in a commit message is treated as the commit title, and that title is used
throughout Git. For example, git-format-patch(1) turns a commit into email, and it uses the title on the
Subject line and the rest of the commit in the body.

Git is to some extent character encoding agnostic.

• The contents of the blob objects are uninterpreted sequences of bytes. There is no encoding
translation at the core level.

• Path names are encoded in UTF−8 normalization form C. This applies to tree objects, the index file,
ref names, as well as path names in command line arguments, environment variables and config
files (.git/config (see git-config(1)), gitignore(5), gitattributes(5) and gitmodules(5)).

Note that Git at the core level treats path names simply as sequences of non−NUL bytes, there are
no path name encoding conversions (except on Mac and Windows). Therefore, using non−ASCII
path names will mostly work even on platforms and file systems that use legacy extended ASCII
encodings. However, repositories created on such systems will not work properly on UTF−8−based
systems (e.g. Linux, Mac, Windows) and vice versa. Additionally, many Git−based tools simply
assume path names to be UTF−8 and will fail to display other encodings correctly.

• Commit log messages are typically encoded in UTF−8, but other extended ASCII encodings are
also supported. This includes ISO−8859−x, CP125x and many others, but not UTF−16/32,
EBCDIC and CJK multi−byte encodings (GBK, Shift−JIS, Big5, EUC−x, CP9xx etc.).

Although we encourage that the commit log messages are encoded in UTF−8, both the core and Git
Porcelain are designed not to force UTF−8 on projects. If all participants of a particular project find it more
convenient to use legacy encodings, Git does not forbid it. However, there are a few things to keep in mind.

Git 2.25.1 02/08/2023 7

GIT−COMMIT(1) Git Manual GIT−COMMIT(1)

1. git commit and git commit−tree issues a warning if the commit log message given to it does not
look like a valid UTF−8 string, unless you explicitly say your project uses a legacy encoding. The
way to say this is to have i18n.commitencoding in .git/config file, like this:

[i18n]
commitEncoding = ISO−8859−1

Commit objects created with the above setting record the value of i18n.commitEncoding in its
encoding header. This is to help other people who look at them later. Lack of this header implies
that the commit log message is encoded in UTF−8.

2. git log, git show, git blame and friends look at the encoding header of a commit object, and try to
re−code the log message into UTF−8 unless otherwise specified. You can specify the desired
output encoding with i18n.logOutputEncoding in .git/config file, like this:

[i18n]
logOutputEncoding = ISO−8859−1

If you do not have this configuration variable, the value of i18n.commitEncoding is used
instead.

Note that we deliberately chose not to re−code the commit log message when a commit is made to force
UTF−8 at the commit object level, because re−coding to UTF−8 is not necessarily a reversible operation.

ENVIRONMENT AND CONFIGURATION VARIABLES
The editor used to edit the commit log message will be chosen from the GIT_EDITOR environment
variable, the core.editor configuration variable, the VISUAL environment variable, or the EDITOR

environment variable (in that order). See git-var(1) for details.

HOOKS
This command can run commit−msg, prepare−commit−msg, pre−commit, post−commit and
post−rewrite hooks. See githooks(5) for more information.

FILES
$GIT_DIR/COMMIT_EDITMSG

This file contains the commit message of a commit in progress. If git commit exits due to an error
before creating a commit, any commit message that has been provided by the user (e.g., in an editor
session) will be available in this file, but will be overwritten by the next invocation of git commit.

SEE ALSO
git-add(1), git-rm(1), git-mv(1), git-merge(1), git-commit-tree(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 8

