
GIT−CHERRY(1) Git Manual GIT−CHERRY(1)

NAME
git-cherry − Find commits yet to be applied to upstream

SYNOPSIS
git cherry [−v] [<upstream> [<head> [<limit>]]]

DESCRIPTION
Determine whether there are commits in <head>..<upstream> that are equivalent to those in the range
<limit>..<head>.

The equivalence test is based on the diff, after removing whitespace and line numbers. git−cherry therefore
detects when commits have been "copied" by means of git-cherry-pick(1), git-am(1) or git-rebase(1).

Outputs the SHA1 of every commit in <limit>..<head>, prefixed with − for commits that have an
equivalent in <upstream>, and + for commits that do not.

OPTIONS
−v

Show the commit subjects next to the SHA1s.

<upstream>
Upstream branch to search for equivalent commits. Defaults to the upstream branch of HEAD.

<head>
Working branch; defaults to HEAD.

<limit>
Do not report commits up to (and including) limit.

EXAMPLES
Patch workflows

git−cherry is frequently used in patch−based workflows (see gitworkflows(7)) to determine if a series of
patches has been applied by the upstream maintainer. In such a workflow you might create and send a topic
branch like this:

$ git checkout −b topic origin/master
work and create some commits
$ git format−patch origin/master
$ git send−email ... 00*

Later, you can see whether your changes have been applied by saying (still on topic):

$ git fetch # update your notion of origin/master
$ git cherry −v

Concrete example

In a situation where topic consisted of three commits, and the maintainer applied two of them, the situation
might look like:

$ git log −−graph −−oneline −−decorate −−boundary origin/master...topic
* 7654321 (origin/master) upstream tip commit
[... snip some other commits ...]
* cccc111 cherry−pick of C
* aaaa111 cherry−pick of A
[... snip a lot more that has happened ...]
| * cccc000 (topic) commit C

Git 2.25.1 02/08/2023 1

GIT−CHERRY(1) Git Manual GIT−CHERRY(1)

| * bbbb000 commit B
| * aaaa000 commit A
|/
o 1234567 branch point

In such cases, git−cherry shows a concise summary of what has yet to be applied:

$ git cherry origin/master topic
− cccc000... commit C
+ bbbb000... commit B
− aaaa000... commit A

Here, we see that the commits A and C (marked with −) can be dropped from your topic branch when you
rebase it on top of origin/master, while the commit B (marked with +) still needs to be kept so that it will
be sent to be applied to origin/master.

Using a limit

The optional <limit> is useful in cases where your topic is based on other work that is not in upstream.
Expanding on the previous example, this might look like:

$ git log −−graph −−oneline −−decorate −−boundary origin/master...topic
* 7654321 (origin/master) upstream tip commit
[... snip some other commits ...]
* cccc111 cherry−pick of C
* aaaa111 cherry−pick of A
[... snip a lot more that has happened ...]
| * cccc000 (topic) commit C
| * bbbb000 commit B
| * aaaa000 commit A
| * 0000fff (base) unpublished stuff F
[... snip ...]
| * 0000aaa unpublished stuff A
|/
o 1234567 merge−base between upstream and topic

By specifying base as the limit, you can avoid listing commits between base and topic:

$ git cherry origin/master topic base
− cccc000... commit C
+ bbbb000... commit B
− aaaa000... commit A

SEE ALSO
git-patch-id(1)

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 2

