
GIT−CHECK−REF−FOR(1) Git Manual GIT−CHECK−REF−FOR(1)

NAME
git-check-ref-format − Ensures that a reference name is well formed

SYNOPSIS
git check−ref−format [−−normalize]

[−−[no−]allow−onelevel] [−−refspec−pattern]
<refname>

git check−ref−format −−branch <branchname−shorthand>

DESCRIPTION
Checks if a given refname is acceptable, and exits with a non−zero status if it is not.

A reference is used in Git to specify branches and tags. A branch head is stored in the refs/heads hierarchy,
while a tag is stored in the refs/tags hierarchy of the ref namespace (typically in $GIT_DIR/refs/heads

and $GIT_DIR/refs/tags directories or, as entries in file $GIT_DIR/packed−refs if refs are packed by git

gc).

Git imposes the following rules on how references are named:

1. They can include slash / for hierarchical (directory) grouping, but no slash−separated component
can begin with a dot . or end with the sequence .lock.

2. They must contain at least one /. This enforces the presence of a category like heads/, tags/ etc.
but the actual names are not restricted. If the −−allow−onelevel option is used, this rule is
waiv ed.

3. They cannot have two consecutive dots .. anywhere.

4. They cannot have ASCII control characters (i.e. bytes whose values are lower than \040, or \177
DEL), space, tilde ˜, caret ˆ, or colon : anywhere.

5. They cannot have question−mark ?, asterisk *, or open bracket [ anywhere. See the
−−refspec−pattern option below for an exception to this rule.

6. They cannot begin or end with a slash / or contain multiple consecutive slashes (see the
−−normalize option below for an exception to this rule)

7. They cannot end with a dot ..

8. They cannot contain a sequence @{.

9. They cannot be the single character @.

10. They cannot contain a \.

These rules make it easy for shell script based tools to parse reference names, pathname expansion by the
shell when a reference name is used unquoted (by mistake), and also avoid ambiguities in certain reference
name expressions (see gitrevisions(7)):

1. A double−dot .. is often used as in ref1..ref2, and in some contexts this notation means ˆref1

ref2 (i.e. not in ref1 and in ref2).

2. A tilde ˜ and caret ˆ are used to introduce the postfix nth parent and peel onion operation.

3. A colon : is used as in srcref:dstref to mean "use srcref’s value and store it in dstref" in fetch
and push operations. It may also be used to select a specific object such as with git cat−file: "git
cat−file blob v1.3.3:refs.c".

4. at−open−brace @{ is used as a notation to access a reflog entry.

With the −−branch option, the command takes a name and checks if it can be used as a valid branch name
(e.g. when creating a new branch). But be cautious when using the previous checkout syntax that may refer
to a detached HEAD state. The rule git check−ref−format −−branch $name implements may be stricter

Git 2.25.1 02/08/2023 1



GIT−CHECK−REF−FOR(1) Git Manual GIT−CHECK−REF−FOR(1)

than what git check−ref−format refs/heads/$name says (e.g. a dash may appear at the beginning of a ref
component, but it is explicitly forbidden at the beginning of a branch name). When run with −−branch

option in a repository, the input is first expanded for the “previous checkout syntax” @{−n}. For example,
@{−1} is a way to refer the last thing that was checked out using "git switch" or "git checkout" operation.
This option should be used by porcelains to accept this syntax anywhere a branch name is expected, so they
can act as if you typed the branch name. As an exception note that, the “previous checkout operation”
might result in a commit object name when the N−th last thing checked out was not a branch.

OPTIONS
−−[no−]allow−onelevel

Controls whether one−level refnames are accepted (i.e., refnames that do not contain multiple
/−separated components). The default is −−no−allow−onelevel.

−−refspec−pattern
Interpret <refname> as a reference name pattern for a refspec (as used with remote repositories). If this
option is enabled, <refname> is allowed to contain a single * in the refspec (e.g., foo/bar*/baz or
foo/bar*baz/ but not foo/bar*/baz*).

−−normalize
Normalize refname by removing any leading slash (/) characters and collapsing runs of adjacent
slashes between name components into a single slash. If the normalized refname is valid then print it
to standard output and exit with a status of 0, otherwise exit with a non−zero status. (−−print is a
deprecated way to spell −−normalize.)

EXAMPLES
• Print the name of the previous thing checked out:

$ git check−ref−format −−branch @{−1}

• Determine the reference name to use for a new branch:

$ ref=$(git check−ref−format −−normalize "refs/heads/$newbranch")||
{ echo "we do not like '$newbranch' as a branch name." >&2 ; exit 1 ; }

GIT
Part of the git(1) suite

Git 2.25.1 02/08/2023 2


