
GETUTENT(3) Linux Programmer’s Manual GETUTENT(3)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname − access utmp file entries

SYNOPSIS
#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *ut);

struct utmp *getutline(const struct utmp *ut);

struct utmp *pututline(const struct utmp *ut);

void setutent(void);

void endutent(void);

int utmpname(const char * file);

DESCRIPTION
New applications should use the POSIX.1-specified "utmpx" versions of these functions; see CONFORM-
ING TO.

utmpname() sets the name of the utmp-format file for the other utmp functions to access. If utmpname()
is not used to set the filename before the other functions are used, they assume _PATH_UTMP, as defined
in <paths.h>.

setutent() rewinds the file pointer to the beginning of the utmp file. It is generally a good idea to call it be-
fore any of the other functions.

endutent() closes the utmp file. It should be called when the user code is done accessing the file with the
other functions.

getutent() reads a line from the current file position in the utmp file. It returns a pointer to a structure con-
taining the fields of the line. The definition of this structure is shown in utmp(5).

getutid() searches forward from the current file position in the utmp file based upon ut. If ut−>ut_type is
one of RUN_LVL, BOOT_TIME, NEW_TIME, or OLD_TIME, getutid() will find the first entry whose
ut_type field matches ut−>ut_type. If ut−>ut_type is one of INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, or DEAD_PROCESS, getutid() will find the first entry whose ut_id field matches
ut−>ut_id.

getutline() searches forward from the current file position in the utmp file. It scans entries whose ut_type is
USER_PROCESS or LOGIN_PROCESS and returns the first one whose ut_line field matches
ut−>ut_line.

pututline() writes the utmp structure ut into the utmp file. It uses getutid() to search for the proper place in
the file to insert the new entry. If it cannot find an appropriate slot for ut, pututline() will append the new
entry to the end of the file.

RETURN VALUE
getutent(), getutid(), and getutline() return a pointer to a struct utmp on success, and NULL on failure
(which includes the "record not found" case). This struct utmp is allocated in static storage, and may be
overwritten by subsequent calls.

On success pututline() returns ut; on failure, it returns NULL.

utmpname() returns 0 if the new name was successfully stored, or −1 on failure.

In the event of an error, these functions errno set to indicate the cause.

ERRORS
ENOMEM

Out of memory.

ESRCH

Record not found.

2019-08-02 1

GETUTENT(3) Linux Programmer’s Manual GETUTENT(3)

setutent(), pututline(), and the getut*() functions can also fail for the reasons described in open(2).

FILES
/var/run/utmp

database of currently logged-in users

/var/log/wtmp

database of past user logins

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safetygetutent() MT-Unsafe init race:utent
race:utentbuf sig:ALRM timer

Thread safetygetutid(),
getutline()

MT-Unsafe init race:utent
sig:ALRM timer

Thread safetypututline() MT-Unsafe race:utent
sig:ALRM timer

Thread safety MT-Unsafe race:utentsetutent(),
endutent(),
utmpname()

In the above table, utent in race:utent signifies that if any of the functions setutent(), getutent(), getutid(),
getutline(), pututline(), utmpname(), or endutent() are used in parallel in different threads of a program,
then data races could occur.

CONFORMING TO
XPG2, SVr4.

In XPG2 and SVID 2 the function pututline() is documented to return void, and that is what it does on
many systems (AIX, HP-UX). HP-UX introduces a new function _pututline() with the prototype given
above for pututline().

All these functions are obsolete now on non-Linux systems. POSIX.1-2001 and POSIX.1-2008, following
SUSv1, does not have any of these functions, but instead uses

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *);

struct utmpx *getutxline(const struct utmpx *);

struct utmpx *pututxline(const struct utmpx *);

void setutxent(void);

void endutxent(void);

These functions are provided by glibc, and perform the same task as their equivalents without the "x", but
use struct utmpx, defined on Linux to be the same as struct utmp. For completeness, glibc also provides
utmpxname(), although this function is not specified by POSIX.1.

On some other systems, the utmpx structure is a superset of the utmp structure, with additional fields, and
larger versions of the existing fields, and parallel files are maintained, often /var/*/utmpx and
/var/*/wtmpx.

Linux glibc on the other hand does not use a parallel utmpx file since its utmp structure is already large
enough. The "x" functions listed above are just aliases for their counterparts without the "x" (e.g., getutx-

ent() is an alias for getutent()).

NOTES

2019-08-02 2

GETUTENT(3) Linux Programmer’s Manual GETUTENT(3)

Glibc notes

The above functions are not thread-safe. Glibc adds reentrant versions

#include <utmp.h>

int getutent_r(struct utmp *ubuf, struct utmp **ubufp);

int getutid_r(struct utmp *ut,

struct utmp *ubuf, struct utmp **ubufp);

int getutline_r(struct utmp *ut,

struct utmp *ubuf, struct utmp **ubufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getutent_r(), getutid_r(), getutline_r():
_GNU_SOURCE
|| /* since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

These functions are GNU extensions, analogs of the functions of the same name without the _r suffix. The
ubuf argument gives these functions a place to store their result. On success, they return 0, and a pointer to
the result is written in *ubufp. On error, these functions return −1. There are no utmpx equivalents of the
above functions. (POSIX.1 does not specify such functions.)

EXAMPLE
The following example adds and removes a utmp record, assuming it is run from within a pseudo terminal.
For usage in a real application, you should check the return values of getpwuid(3) and ttyname(3).

#include <string.h>

#include <stdlib.h>

#include <pwd.h>

#include <unistd.h>

#include <utmp.h>

#include <time.h>

int

main(int argc, char *argv[])

{

struct utmp entry;

system("echo before adding entry:;who");

entry.ut_type = USER_PROCESS;

entry.ut_pid = getpid();

strcpy(entry.ut_line, ttyname(STDIN_FILENO) + strlen("/dev/"));

/* only correct for ptys named /dev/tty[pqr][0−9a−z] */

strcpy(entry.ut_id, ttyname(STDIN_FILENO) + strlen("/dev/tty"));

time(&entry.ut_time);

strcpy(entry.ut_user, getpwuid(getuid())−>pw_name);

memset(entry.ut_host, 0, UT_HOSTSIZE);

entry.ut_addr = 0;

setutent();

pututline(&entry);

system("echo after adding entry:;who");

entry.ut_type = DEAD_PROCESS;

memset(entry.ut_line, 0, UT_LINESIZE);

entry.ut_time = 0;

2019-08-02 3

GETUTENT(3) Linux Programmer’s Manual GETUTENT(3)

memset(entry.ut_user, 0, UT_NAMESIZE);

setutent();

pututline(&entry);

system("echo after removing entry:;who");

endutent();

exit(EXIT_SUCCESS);

}

SEE ALSO
getutmp(3), utmp(5)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

2019-08-02 4

