
GETOPT(1) User Commands GETOPT(1)

NAME
getopt − parse command options (enhanced)

SYNOPSIS
getopt optstring parameters

getopt [options] [−−] optstring parameters

getopt [options] −o|−−options optstring [options] [−−] parameters

DESCRIPTION
getopt is used to break up (parse) options in command lines for easy parsing by shell procedures, and to
check for valid options. It uses the GNU getopt(3) routines to do this.

The parameters getopt is called with can be divided into two parts: options which modify the way getopt

will do the parsing (the options and the optstring in the SYNOPSIS), and the parameters which are to be
parsed (parameters in the SYNOPSIS). The second part will start at the first non−option parameter that is
not an option argument, or after the first occurrence of ’−−’. If no ’−o’ or ’−−options’ option is found in
the first part, the first parameter of the second part is used as the short options string.

If the environment variable GETOPT_COMPATIBLE is set, or if the first parameter is not an option
(does not start with a ’−’, the first format in the SYNOPSIS), getopt will generate output that is compatible
with that of other versions of getopt(1). It will still do parameter shuffling and recognize optional argu-
ments (see section COMPATIBILITY for more information).

Traditional implementations of getopt(1) are unable to cope with whitespace and other (shell-specific) spe-
cial characters in arguments and non−option parameters. To solve this problem, this implementation can
generate quoted output which must once again be interpreted by the shell (usually by using the ev al com-
mand). This has the effect of preserving those characters, but you must call getopt in a way that is no
longer compatible with other versions (the second or third format in the SYNOPSIS). To determine
whether this enhanced version of getopt(1) is installed, a special test option (−T) can be used.

OPTIONS
−a, −−alternative

Allow long options to start with a single ’−’.

−h, −−help

Display help text and exit. No other output is generated.

−l, −−longoptions longopts

The long (multi−character) options to be recognized. More than one option name may be speci-
fied at once, by separating the names with commas. This option may be given more than once, the
longopts are cumulative. Each long option name in longopts may be followed by one colon to in-
dicate it has a required argument, and by two colons to indicate it has an optional argument.

−n, −−name progname

The name that will be used by the getopt(3) routines when it reports errors. Note that errors of
getopt(1) are still reported as coming from getopt.

−o, −−options shortopts

The short (one−character) options to be recognized. If this option is not found, the first parameter
of getopt that does not start with a ’−’ (and is not an option argument) is used as the short options
string. Each short option character in shortopts may be followed by one colon to indicate it has a
required argument, and by two colons to indicate it has an optional argument. The first character
of shortopts may be ’+’ or ’−’ to influence the way options are parsed and output is generated (see
section SCANNING MODES for details).

−q, −−quiet

Disable error reporting by getopt(3).

−Q, −−quiet−output

Do not generate normal output. Errors are still reported by getopt(3), unless you also use −q.

util-linux December 2014 1



GETOPT(1) User Commands GETOPT(1)

−s, −−shell shell

Set quoting conventions to those of shell. If the −s option is not given, the BASH conventions are
used. Valid arguments are currently ’sh’ ’bash’, ’csh’, and ’tcsh’.

−T, −−test

Test if your getopt(1) is this enhanced version or an old version. This generates no output, and
sets the error status to 4. Other implementations of getopt(1), and this version if the environment
variable GETOPT_COMPATIBLE is set, will return ’−−’ and error status 0.

−u, −−unquoted

Do not quote the output. Note that whitespace and special (shell-dependent) characters can cause
havoc in this mode (like they do with other getopt(1) implementations).

−V, −−version

Display version information and exit. No other output is generated.

PARSING
This section specifies the format of the second part of the parameters of getopt (the parameters in the
SYNOPSIS). The next section (OUTPUT) describes the output that is generated. These parameters were
typically the parameters a shell function was called with. Care must be taken that each parameter the shell
function was called with corresponds to exactly one parameter in the parameter list of getopt (see the EX-

AMPLES). All parsing is done by the GNU getopt(3) routines.

The parameters are parsed from left to right. Each parameter is classified as a short option, a long option,
an argument to an option, or a non−option parameter.

A simple short option is a ’−’ followed by a short option character. If the option has a required argument, it
may be written directly after the option character or as the next parameter (i.e., separated by whitespace on
the command line). If the option has an optional argument, it must be written directly after the option char-
acter if present.

It is possible to specify several short options after one ’−’, as long as all (except possibly the last) do not
have required or optional arguments.

A long option normally begins with ’−−’ followed by the long option name. If the option has a required ar-
gument, it may be written directly after the long option name, separated by ’=’, or as the next argument
(i.e., separated by whitespace on the command line). If the option has an optional argument, it must be
written directly after the long option name, separated by ’=’, if present (if you add the ’=’ but nothing be-
hind it, it is interpreted as if no argument was present; this is a slight bug, see the BUGS). Long options
may be abbreviated, as long as the abbreviation is not ambiguous.

Each parameter not starting with a ’−’, and not a required argument of a previous option, is a non−option
parameter. Each parameter after a ’−−’ parameter is always interpreted as a non−option parameter. If the
environment variable POSIXLY_CORRECT is set, or if the short option string started with a ’+’, all re-
maining parameters are interpreted as non−option parameters as soon as the first non−option parameter is
found.

OUTPUT
Output is generated for each element described in the previous section. Output is done in the same order as
the elements are specified in the input, except for non−option parameters. Output can be done in compati-

ble (unquoted) mode, or in such way that whitespace and other special characters within arguments and
non−option parameters are preserved (see QUOTING). When the output is processed in the shell script, it
will seem to be composed of distinct elements that can be processed one by one (by using the shift com-
mand in most shell languages). This is imperfect in unquoted mode, as elements can be split at unexpected
places if they contain whitespace or special characters.

If there are problems parsing the parameters, for example because a required argument is not found or an
option is not recognized, an error will be reported on stderr, there will be no output for the offending ele-
ment, and a non−zero error status is returned.

For a short option, a single ’−’ and the option character are generated as one parameter. If the option has an
argument, the next parameter will be the argument. If the option takes an optional argument, but none was

util-linux December 2014 2



GETOPT(1) User Commands GETOPT(1)

found, the next parameter will be generated but be empty in quoting mode, but no second parameter will be
generated in unquoted (compatible) mode. Note that many other getopt(1) implementations do not support
optional arguments.

If several short options were specified after a single ’−’, each will be present in the output as a separate pa-
rameter.

For a long option, ’−−’ and the full option name are generated as one parameter. This is done regardless
whether the option was abbreviated or specified with a single ’−’ in the input. Arguments are handled as
with short options.

Normally, no non−option parameters output is generated until all options and their arguments have been
generated. Then ’−−’ is generated as a single parameter, and after it the non−option parameters in the order
they were found, each as a separate parameter. Only if the first character of the short options string was a
’−’, non−option parameter output is generated at the place they are found in the input (this is not supported
if the first format of the SYNOPSIS is used; in that case all preceding occurrences of ’−’ and ’+’ are ig-
nored).

QUOTING
In compatible mode, whitespace or ’special’ characters in arguments or non−option parameters are not han-
dled correctly. As the output is fed to the shell script, the script does not know how it is supposed to break
the output into separate parameters. To circumvent this problem, this implementation offers quoting. The
idea is that output is generated with quotes around each parameter. When this output is once again fed to
the shell (usually by a shell ev al command), it is split correctly into separate parameters.

Quoting is not enabled if the environment variable GETOPT_COMPATIBLE is set, if the first form of the
SYNOPSIS is used, or if the option ’−u’ is found.

Different shells use different quoting conventions. You can use the ’−s’ option to select the shell you are
using. The following shells are currently supported: ’sh’, ’bash’, ’csh’ and ’tcsh’. Actually, only two ’fla-
vors’ are distinguished: sh−like quoting conventions and csh−like quoting conventions. Chances are that if
you use another shell script language, one of these flavors can still be used.

SCANNING MODES
The first character of the short options string may be a ’−’ or a ’+’ to indicate a special scanning mode. If
the first calling form in the SYNOPSIS is used they are ignored; the environment variable
POSIXLY_CORRECT is still examined, though.

If the first character is ’+’, or if the environment variable POSIXLY_CORRECT is set, parsing stops as
soon as the first non−option parameter (i.e., a parameter that does not start with a ’−’) is found that is not an
option argument. The remaining parameters are all interpreted as non−option parameters.

If the first character is a ’−’, non−option parameters are outputted at the place where they are found; in nor-
mal operation, they are all collected at the end of output after a ’−−’ parameter has been generated. Note
that this ’−−’ parameter is still generated, but it will always be the last parameter in this mode.

COMPATIBILITY
This version of getopt(1) is written to be as compatible as possible to other versions. Usually you can just
replace them with this version without any modifications, and with some advantages.

If the first character of the first parameter of getopt is not a ’−’, getopt goes into compatibility mode. It
will interpret its first parameter as the string of short options, and all other arguments will be parsed. It will
still do parameter shuffling (i.e., all non−option parameters are output at the end), unless the environment
variable POSIXLY_CORRECT is set.

The environment variable GETOPT_COMPATIBLE forces getopt into compatibility mode. Setting both
this environment variable and POSIXLY_CORRECT offers 100% compatibility for ’difficult’ programs.
Usually, though, neither is needed.

In compatibility mode, leading ’−’ and ’+’ characters in the short options string are ignored.

util-linux December 2014 3



GETOPT(1) User Commands GETOPT(1)

RETURN CODES
getopt returns error code 0 for successful parsing, 1 if getopt(3) returns errors, 2 if it does not understand
its own parameters, 3 if an internal error occurs like out−of−memory, and 4 if it is called with −T.

EXAMPLES
Example scripts for (ba)sh and (t)csh are provided with the getopt(1) distribution, and are optionally in-
stalled in /usr/share/getopt/ or /usr/share/doc/ in the util-linux subdirectory.

ENVIRONMENT
POSIXLY_CORRECT

This environment variable is examined by the getopt(3) routines. If it is set, parsing stops as soon
as a parameter is found that is not an option or an option argument. All remaining parameters are
also interpreted as non−option parameters, regardless whether they start with a ’−’.

GETOPT_COMPATIBLE
Forces getopt to use the first calling format as specified in the SYNOPSIS.

BUGS
getopt(3) can parse long options with optional arguments that are given an empty optional argument (but
cannot do this for short options). This getopt(1) treats optional arguments that are empty as if they were
not present.

The syntax if you do not want any short option variables at all is not very intuitive (you have to set them ex-
plicitly to the empty string).

AUTHOR
Frodo Looijaard 〈frodo@frodo.looijaard.name〉

SEE ALSO
bash(1), tcsh(1), getopt(3)

AV AILABILITY
The getopt command is part of the util-linux package and is available from Linux Kernel Archive 〈https://
www.kernel.org/pub/linux/utils/util-linux/〉 .

util-linux December 2014 4


