
GEMFILE(5) GEMFILE(5)

NAME
Gemfile − A format for describing gem dependencies for Ruby programs

SYNOPSIS
A Gemfile describes the gem dependencies required to execute associated Ruby code.

Place the Gemfile in the root of the directory containing the associated code. For instance, in a Rails appli-
cation, place the Gemfile in the same directory as the Rakefile.

SYNTAX
A Gemfile is evaluated as Ruby code, in a context which makes available a number of methods used to de-
scribe the gem requirements.

GLOBAL SOURCES
At the top of the Gemfile, add a line for the Rubygems source that contains the gems listed in the Gemfile.

source "https://rubygems.org"

It is possible, but not recommended as of Bundler 1.7, to add multiple global source lines. Each of these
sources MUST be a valid Rubygems repository.

Sources are checked for gems following the heuristics described in SOURCE PRIORITY. If a gem is found
in more than one global source, Bundler will print a warning after installing the gem indicating which
source was used, and listing the other sources where the gem is available. A specific source can be selected
for gems that need to use a non−standard repository, suppressing this warning, by using the :source option
or a source block.

CREDENTIALS

Some gem sources require a username and password. Use bundle config(1) bundle−config.1.html to set the
username and password for any of the sources that need it. The command must be run once on each com-
puter that will install the Gemfile, but this keeps the credentials from being stored in plain text in version
control.

bundle config gems.example.com user:password

For some sources, like a company Gemfury account, it may be easier to include the credentials in the Gem-
file as part of the source URL.

source "https://user:password@gems.example.com"

Credentials in the source URL will take precedence over credentials set using config.

RUBY
If your application requires a specific Ruby version or engine, specify your requirements using the ruby

method, with the following arguments. All parameters are OPTIONAL unless otherwise specified.

VERSION (required)

The version of Ruby that your application requires. If your application requires an alternate Ruby engine,
such as JRuby, Rubinius or TruffleRuby, this should be the Ruby version that the engine is compatible with.

ruby "1.9.3"

December 2019 1

GEMFILE(5) GEMFILE(5)

ENGINE

Each application may specify a Ruby engine. If an engine is specified, an engine version must also be speci-
fied.

What exactly is an Engine? − A Ruby engine is an implementation of the Ruby language.

• For background: the reference or original implementation of the Ruby programming language is called
Matz´s Ruby Interpreter https://en.wikipedia.org/wiki/Ruby_MRI, or MRI for short. This is named af-
ter Ruby creator Yukihiro Matsumoto, also known as Matz. MRI is also known as CRuby, because it is
written in C. MRI is the most widely used Ruby engine.

• Other implementations https://www.ruby−lang.org/en/about/ of Ruby exist. Some of the more
well−known implementations include Rubinius https://rubinius.com/, and JRuby http://jruby.org/. Ru-
binius is an alternative implementation of Ruby written in Ruby. JRuby is an implementation of Ruby
on the JVM, short for Java Virtual Machine.

ENGINE VERSION

Each application may specify a Ruby engine version. If an engine version is specified, an engine must also
be specified. If the engine is "ruby" the engine version specified must match the Ruby version.

ruby "1.8.7", :engine => "jruby", :engine_version => "1.6.7"

PATCHLEVEL

Each application may specify a Ruby patchlevel.

ruby "2.0.0", :patchlevel => "247"

GEMS
Specify gem requirements using the gem method, with the following arguments. All parameters are OP-

TIONAL unless otherwise specified.

NAME (required)

For each gem requirement, list a single gem line.

gem "nokogiri"

VERSION

Each gem MAY have one or more version specifiers.

gem "nokogiri", ">= 1.4.2"
gem "RedCloth", ">= 4.1.0", "< 4.2.0"

REQUIRE AS

Each gem MAY specify files that should be used when autorequiring via Bundler.require. You may pass
an array with multiple files or true if file you want required has same name as gem or false to prevent any
file from being autorequired.

December 2019 2

GEMFILE(5) GEMFILE(5)

gem "redis", :require => ["redis/connection/hiredis", "redis"]
gem "webmock", :require => false
gem "byebug", :require => true

The argument defaults to the name of the gem. For example, these are identical:

gem "nokogiri"
gem "nokogiri", :require => "nokogiri"
gem "nokogiri", :require => true

GROUPS

Each gem MAY specify membership in one or more groups. Any gem that does not specify membership in
any group is placed in the default group.

gem "rspec", :group => :test
gem "wirble", :groups => [:development, :test]

The Bundler runtime allows its two main methods, Bundler.setup and Bundler.require, to limit their im-
pact to particular groups.

setup adds gems to Ruby´s load path
Bundler.setup # defaults to all groups
require "bundler/setup" # same as Bundler.setup
Bundler.setup(:default) # only set up the _default_ group
Bundler.setup(:test) # only set up the _test_ group (but ‘not‘ _default_)
Bundler.setup(:default, :test) # set up the _default_ and _test_ groups, but no others

require requires all of the gems in the specified groups
Bundler.require # defaults to the _default_ group
Bundler.require(:default) # identical
Bundler.require(:default, :test) # requires the _default_ and _test_ groups
Bundler.require(:test) # requires the _test_ group

The Bundler CLI allows you to specify a list of groups whose gems bundle install should not install with
the without configuration.

To specify multiple groups to ignore, specify a list of groups separated by spaces.

bundle config set without test
bundle config set without development test

Also, calling Bundler.setup with no parameters, or calling require "bundler/setup" will setup all groups
except for the ones you excluded via −−without (since they are not available).

December 2019 3

GEMFILE(5) GEMFILE(5)

Note that on bundle install, bundler downloads and evaluates all gems, in order to create a single canonical
list of all of the required gems and their dependencies. This means that you cannot list different versions of
the same gems in different groups. For more details, see Understanding Bundler https://bundler.io/ratio-

nale.html.

PLATFORMS

If a gem should only be used in a particular platform or set of platforms, you can specify them. Platforms
are essentially identical to groups, except that you do not need to use the −−without install−time flag to ex-
clude groups of gems for other platforms.

There are a number of Gemfile platforms:

ruby C Ruby (MRI), Rubinius or TruffleRuby, but NOT Windows

mri Same as ruby, but only C Ruby (MRI)

mingw Windows 32 bit ´mingw32´ platform (aka RubyInstaller)

x64_mingw

Windows 64 bit ´mingw32´ platform (aka RubyInstaller x64)

rbx Rubinius

jruby JRuby

truffleruby

TruffleRuby

mswin Windows

You can restrict further by platform and version for all platforms except for rbx, jruby, truffleruby and
mswin.

To specify a version in addition to a platform, append the version number without the delimiter to the plat-
form. For example, to specify that a gem should only be used on platforms with Ruby 2.3, use:

ruby_23

The full list of platforms and supported versions includes:

ruby 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

mri 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

mingw 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

x64_mingw

2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6

As with groups, you can specify one or more platforms:

gem "weakling", :platforms => :jruby
gem "ruby−debug", :platforms => :mri_18
gem "nokogiri", :platforms => [:mri_18, :jruby]

All operations involving groups (bundle install bundle−install.1.html, Bundler.setup, Bundler.require)
behave exactly the same as if any groups not matching the current platform were explicitly excluded.

SOURCE

You can select an alternate Rubygems repository for a gem using the ´:source´ option.

December 2019 4

GEMFILE(5) GEMFILE(5)

gem "some_internal_gem", :source => "https://gems.example.com"

This forces the gem to be loaded from this source and ignores any global sources declared at the top level
of the file. If the gem does not exist in this source, it will not be installed.

Bundler will search for child dependencies of this gem by first looking in the source selected for the parent,
but if they are not found there, it will fall back on global sources using the ordering described in SOURCE

PRIORITY.

Selecting a specific source repository this way also suppresses the ambiguous gem warning described above
in GLOBAL SOURCES (#source).

Using the :source option for an individual gem will also make that source available as a possible global
source for any other gems which do not specify explicit sources. Thus, when adding gems with explicit
sources, it is recommended that you also ensure all other gems in the Gemfile are using explicit sources.

GIT

If necessary, you can specify that a gem is located at a particular git repository using the :git parameter. The
repository can be accessed via several protocols:

HTTP(S)

gem "rails", :git => "https://github.com/rails/rails.git"

SSH gem "rails", :git => "git@github.com:rails/rails.git"

git gem "rails", :git => "git://github.com/rails/rails.git"

If using SSH, the user that you use to run bundle install MUST have the appropriate keys available in their
$HOME/.ssh.

NOTE: http:// and git:// URLs should be avoided if at all possible. These protocols are unauthenticated, so
a man−in−the−middle attacker can deliver malicious code and compromise your system. HTTPS and SSH
are strongly preferred.

The group, platforms, and require options are available and behave exactly the same as they would for a
normal gem.

A git repository SHOULD have at least one file, at the root of the directory containing the gem, with the
extension .gemspec. This file MUST contain a valid gem specification, as expected by the gem build com-
mand.

If a git repository does not have a .gemspec, bundler will attempt to create one, but it will not contain any
dependencies, executables, or C extension compilation instructions. As a result, it may fail to properly inte-
grate into your application.

If a git repository does have a .gemspec for the gem you attached it to, a version specifier, if provided,
means that the git repository is only valid if the .gemspec specifies a version matching the version specifier.
If not, bundler will print a warning.

gem "rails", "2.3.8", :git => "https://github.com/rails/rails.git"
bundle install will fail, because the .gemspec in the rails
repository´s master branch specifies version 3.0.0

If a git repository does not have a .gemspec for the gem you attached it to, a version specifier MUST be
provided. Bundler will use this version in the simple .gemspec it creates.

Git repositories support a number of additional options.

December 2019 5

GEMFILE(5) GEMFILE(5)

branch, tag, and ref

You MUST only specify at most one of these options. The default is :branch => "master". For
example:

gem "rails", :git => "https://github.com/rails/rails.git", :branch => "5−0−stable"

gem "rails", :git => "https://github.com/rails/rails.git", :tag => "v5.0.0"

gem "rails", :git => "https://github.com/rails/rails.git", :ref => "4aded"

submodules

For reference, a git submodule https://git−scm.com/book/en/v2/Git−Tools−Submodules lets you
have another git repository within a subfolder of your repository. Specify :submodules => true to
cause bundler to expand any submodules included in the git repository

If a git repository contains multiple .gemspecs, each .gemspec represents a gem located at the same place
in the file system as the .gemspec.

|˜rails [git root]
| |−rails.gemspec [rails gem located here]
|˜actionpack
| |−actionpack.gemspec [actionpack gem located here]
|˜activesupport
| |−activesupport.gemspec [activesupport gem located here]
|...

To install a gem located in a git repository, bundler changes to the directory containing the gemspec, runs
gem build name.gemspec and then installs the resulting gem. The gem build command, which comes
standard with Rubygems, evaluates the .gemspec in the context of the directory in which it is located.

GIT SOURCE

A custom git source can be defined via the git_source method. Provide the source´s name as an argument,
and a block which receives a single argument and interpolates it into a string to return the full repo address:

git_source(:stash){ |repo_name| "https://stash.corp.acme.pl/#{repo_name}.git" }
gem ´rails´, :stash => ´forks/rails´

In addition, if you wish to choose a specific branch:

gem "rails", :stash => "forks/rails", :branch => "branch_name"

GITHUB

NOTE: This shorthand should be avoided until Bundler 2.0, since it currently expands to an insecure git://

URL. This allows a man−in−the−middle attacker to compromise your system.

If the git repository you want to use is hosted on GitHub and is public, you can use the :github shorthand to
specify the github username and repository name (without the trailing ".git"), separated by a slash. If both
the username and repository name are the same, you can omit one.

gem "rails", :github => "rails/rails"
gem "rails", :github => "rails"

December 2019 6

GEMFILE(5) GEMFILE(5)

Are both equivalent to

gem "rails", :git => "git://github.com/rails/rails.git"

Since the github method is a specialization of git_source, it accepts a :branch named argument.

GIST

If the git repository you want to use is hosted as a Github Gist and is public, you can use the :gist shorthand
to specify the gist identifier (without the trailing ".git").

gem "the_hatch", :gist => "4815162342"

Is equivalent to:

gem "the_hatch", :git => "https://gist.github.com/4815162342.git"

Since the gist method is a specialization of git_source, it accepts a :branch named argument.

BITBUCKET

If the git repository you want to use is hosted on Bitbucket and is public, you can use the :bitbucket short-
hand to specify the bitbucket username and repository name (without the trailing ".git"), separated by a
slash. If both the username and repository name are the same, you can omit one.

gem "rails", :bitbucket => "rails/rails"
gem "rails", :bitbucket => "rails"

Are both equivalent to

gem "rails", :git => "https://rails@bitbucket.org/rails/rails.git"

Since the bitbucket method is a specialization of git_source, it accepts a :branch named argument.

PATH

You can specify that a gem is located in a particular location on the file system. Relative paths are resolved
relative to the directory containing the Gemfile.

Similar to the semantics of the :git option, the :path option requires that the directory in question either
contains a .gemspec for the gem, or that you specify an explicit version that bundler should use.

Unlike :git, bundler does not compile C extensions for gems specified as paths.

gem "rails", :path => "vendor/rails"

December 2019 7

GEMFILE(5) GEMFILE(5)

If you would like to use multiple local gems directly from the filesystem, you can set a global path option
to the path containing the gem´s files. This will automatically load gemspec files from subdirectories.

path ´components´ do
gem ´admin_ui´
gem ´public_ui´

end

BLOCK FORM OF SOURCE, GIT, PATH, GROUP and PLATFORMS
The :source, :git, :path, :group, and :platforms options may be applied to a group of gems by using block
form.

source "https://gems.example.com" do
gem "some_internal_gem"
gem "another_internal_gem"

end

git "https://github.com/rails/rails.git" do
gem "activesupport"
gem "actionpack"

end

platforms :ruby do
gem "ruby−debug"
gem "sqlite3"

end

group :development, :optional => true do
gem "wirble"
gem "faker"

end

In the case of the group block form the :optional option can be given to prevent a group from being in-
stalled unless listed in the −−with option given to the bundle install command.

In the case of the git block form, the :ref, :branch, :tag, and :submodules options may be passed to the git

method, and all gems in the block will inherit those options.

The presence of a source block in a Gemfile also makes that source available as a possible global source for
any other gems which do not specify explicit sources. Thus, when defining source blocks, it is recom-
mended that you also ensure all other gems in the Gemfile are using explicit sources, either via source
blocks or :source directives on individual gems.

INSTALL_IF
The install_if method allows gems to be installed based on a proc or lambda. This is especially useful for
optional gems that can only be used if certain software is installed or some other conditions are met.

install_if −> { RUBY_PLATFORM =˜ /darwin/ } do
gem "pasteboard"

December 2019 8

GEMFILE(5) GEMFILE(5)

end

GEMSPEC
The .gemspec http://guides.rubygems.org/specification−reference/ file is where you provide metadata about
your gem to Rubygems. Some required Gemspec attributes include the name, description, and homepage of
your gem. This is also where you specify the dependencies your gem needs to run.

If you wish to use Bundler to help install dependencies for a gem while it is being developed, use the gem-

spec method to pull in the dependencies listed in the .gemspec file.

The gemspec method adds any runtime dependencies as gem requirements in the default group. It also adds
development dependencies as gem requirements in the development group. Finally, it adds a gem require-
ment on your project (:path => ´.´). In conjunction with Bundler.setup, this allows you to require project
files in your test code as you would if the project were installed as a gem; you need not manipulate the load
path manually or require project files via relative paths.

The gemspec method supports optional :path, :glob, :name, and :development_group options, which
control where bundler looks for the .gemspec, the glob it uses to look for the gemspec (defaults to:
"{,,/*}.gemspec"), what named .gemspec it uses (if more than one is present), and which group develop-
ment dependencies are included in.

When a gemspec dependency encounters version conflicts during resolution, the local version under devel-
opment will always be selected −− even if there are remote versions that better match other requirements
for the gemspec gem.

SOURCE PRIORITY
When attempting to locate a gem to satisfy a gem requirement, bundler uses the following priority order:

1. The source explicitly attached to the gem (using :source, :path, or :git)

2. For implicit gems (dependencies of explicit gems), any source, git, or path repository declared on the
parent. This results in bundler prioritizing the ActiveSupport gem from the Rails git repository over
ones from rubygems.org

3. The sources specified via global source lines, searching each source in your Gemfile from last added
to first added.

December 2019 9

