
FUTEX(7) Linux Programmer’s Manual FUTEX(7)

NAME
futex − fast user-space locking

SYNOPSIS
#include <linux/futex.h>

DESCRIPTION
The Linux kernel provides futexes ("Fast user-space mutexes") as a building block for fast user-space lock-

ing and semaphores. Futexes are very basic and lend themselves well for building higher-level locking ab-

stractions such as mutexes, condition variables, read-write locks, barriers, and semaphores.

Most programmers will in fact not be using futexes directly but will instead rely on system libraries built on

them, such as the Native POSIX Thread Library (NPTL) (see pthreads(7)).

A futex is identified by a piece of memory which can be shared between processes or threads. In these dif-

ferent processes, the futex need not have identical addresses. In its bare form, a futex has semaphore se-

mantics; it is a counter that can be incremented and decremented atomically; processes can wait for the

value to become positive.

Futex operation occurs entirely in user space for the noncontended case. The kernel is involved only to ar-

bitrate the contended case. As any sane design will strive for noncontention, futexes are also optimized for

this situation.

In its bare form, a futex is an aligned integer which is touched only by atomic assembler instructions. This

integer is four bytes long on all platforms. Processes can share this integer using mmap(2), via shared

memory segments, or because they share memory space, in which case the application is commonly called

multithreaded.

Semantics

Any futex operation starts in user space, but it may be necessary to communicate with the kernel using the

futex(2) system call.

To "up" a futex, execute the proper assembler instructions that will cause the host CPU to atomically incre-

ment the integer. Afterward, check if it has in fact changed from 0 to 1, in which case there were no waiters

and the operation is done. This is the noncontended case which is fast and should be common.

In the contended case, the atomic increment changed the counter from −1 (or some other negative number).

If this is detected, there are waiters. User space should now set the counter to 1 and instruct the kernel to

wake up any waiters using the FUTEX_WAKE operation.

Waiting on a futex, to "down" it, is the reverse operation. Atomically decrement the counter and check if it

changed to 0, in which case the operation is done and the futex was uncontended. In all other circum-

stances, the process should set the counter to −1 and request that the kernel wait for another process to up

the futex. This is done using the FUTEX_WAIT operation.

The futex(2) system call can optionally be passed a timeout specifying how long the kernel should wait for

the futex to be upped. In this case, semantics are more complex and the programmer is referred to futex(2)

for more details. The same holds for asynchronous futex waiting.

VERSIONS
Initial futex support was merged in Linux 2.5.7 but with different semantics from those described above.

Current semantics are available from Linux 2.5.40 onward.

NOTES
To reiterate, bare futexes are not intended as an easy-to-use abstraction for end users. Implementors are ex-

pected to be assembly literate and to have read the sources of the futex user-space library referenced below.

This man page illustrates the most common use of the futex(2) primitives; it is by no means the only one.

SEE ALSO
clone(2), futex(2), get_robust_list(2), set_robust_list(2), set_tid_address(2), pthreads(7)

Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux (proceedings of the Ottawa Linux Sympo-

sium 2002), futex example library, futex-*.tar.bz2 〈ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/〉 .

Linux 2017-09-15 1



FUTEX(7) Linux Programmer’s Manual FUTEX(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 2


