
FANOTIFY_MARK(2) Linux Programmer’s Manual FANOTIFY_MARK(2)

NAME
fanotify_mark − add, remove, or modify an fanotify mark on a filesystem object

SYNOPSIS
#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd , unsigned int flags,

uint64_t mask, int dirfd , const char *pathname);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object. The caller must have
read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

flags is a bit mask describing the modification to perform. It must include exactly one of the following val-
ues:

FAN_MARK_ADD

The events in mask will be added to the mark mask (or to the ignore mask). mask must be
nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE

The events in argument mask will be removed from the mark mask (or from the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_FLUSH

Remove either all marks for filesystems, all marks for mounts, or all marks for directories and files
from the fanotify group. If flags contains FAN_MARK_MOUNT, all marks for mounts are re-
moved from the group. If flags contains FAN_MARK_FILESYSTEM, all marks for filesystems
are removed from the group. Otherwise, all marks for directories and files are removed. No flag
other than and at most one of the flags FAN_MARK_MOUNT or FAN_MARK_FILESYSTEM

can be used in conjunction with FAN_MARK_FLUSH. mask is ignored.

If none of the values above is specified, or more than one is specified, the call fails with the error EINVAL.

In addition, zero or more of the following values may be ORed into flags:

FAN_MARK_DONT_FOLLOW

If pathname is a symbolic link, mark the link itself, rather than the file to which it refers. (By de-
fault, fanotify_mark() dereferences pathname if it is a symbolic link.)

FAN_MARK_ONLYDIR

If the filesystem object to be marked is not a directory, the error ENOTDIR shall be raised.

FAN_MARK_MOUNT

Mark the mount point specified by pathname. If pathname is not itself a mount point, the mount
point containing pathname will be marked. All directories, subdirectories, and the contained files
of the mount point will be monitored. This value cannot be used if the fanotify_fd file descriptor
has been initialized with the flag FAN_REPORT_FID or if any of the new directory modification
ev ents are provided as a mask. Attempting to do so will result in the error EINVAL being re-
turned.

FAN_MARK_FILESYSTEM (since Linux 4.20)
Mark the filesystem specified by pathname. The filesystem containing pathname will be marked.
All the contained files and directories of the filesystem from any mount point will be monitored.

FAN_MARK_IGNORED_MASK

The events in mask shall be added to or removed from the ignore mask.

FAN_MARK_IGNORED_SURV_MODIFY

The ignore mask shall survive modify events. If this flag is not set, the ignore mask is cleared
when a modify event occurs for the ignored file or directory.

Linux 2019-08-02 1



FANOTIFY_MARK(2) Linux Programmer’s Manual FANOTIFY_MARK(2)

mask defines which events shall be listened for (or which shall be ignored). It is a bit mask composed of
the following values:

FAN_ACCESS

Create an event when a file or directory (but see BUGS) is accessed (read).

FAN_MODIFY

Create an event when a file is modified (write).

FAN_CLOSE_WRITE

Create an event when a writable file is closed.

FAN_CLOSE_NOWRITE

Create an event when a read-only file or directory is closed.

FAN_OPEN

Create an event when a file or directory is opened.

FAN_OPEN_EXEC (since Linux 5.0)
Create an event when a file is opened with the intent to be executed. See NOTES for additional
details.

FAN_ATTRIB (since Linux 5.1)
Create an event when the metadata for a file or directory has changed.

FAN_CREATE (since Linux 5.1)
Create an event when a file or directory has been created in a marked parent directory.

FAN_DELETE (since Linux 5.1)
Create an event when a file or directory has been deleted in a marked parent directory.

FAN_DELETE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself is deleted.

FAN_MOVED_FROM (since Linux 5.1)
Create an event when a file or directory has been moved from a marked parent directory.

FAN_MOVED_TO (since Linux 5.1)
Create an event when a file or directory has been moved to a marked parent directory.

FAN_MOVE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself has been moved.

FAN_Q_OVERFLOW

Create an event when an overflow of the event queue occurs. The size of the event queue is lim-
ited to 16384 entries if FAN_UNLIMITED_QUEUE is not set in fanotify_init(2).

FAN_OPEN_PERM

Create an event when a permission to open a file or directory is requested. An fanotify file de-
scriptor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is required.

FAN_OPEN_EXEC_PERM (since Linux 5.0)
Create an event when a permission to open a file for execution is requested. An fanotify file de-
scriptor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is required.
See NOTES for additional details.

FAN_ACCESS_PERM

Create an event when a permission to read a file or directory is requested. An fanotify file descrip-
tor created with FAN_CLASS_PRE_CONTENT or FAN_CLASS_CONTENT is required.

FAN_ONDIR

Create events for directories—for example, when opendir(3), readdir(3) (but see BUGS), and
closedir(3) are called. Without this flag, only events for files are created. The FAN_ONDIR flag
is reported in an event mask only if the fanotify_fd file descriptor has been initialized with the flag
FAN_REPORT_FID. In the context of directory entry events, such as FAN_CREATE,

Linux 2019-08-02 2



FANOTIFY_MARK(2) Linux Programmer’s Manual FANOTIFY_MARK(2)

FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO for example, specifying the
flag FAN_ONDIR is required in order to create events when subdirectory entries are modified
(i.e., mkdir(2)/ rmdir(2)). Subdirectory entry modification events will never be merged with non-
subdirectory entry modification events. This flag is never reported individually within an event
and is always supplied in conjunction with another event type.

FAN_EVENT_ON_CHILD

Events for the immediate children of marked directories shall be created. The flag has no effect
when marking mounts and filesystems. Note that events are not generated for children of the sub-
directories of marked directories. To monitor complete directory trees it is necessary to mark the
relevant mount.

The following composed values are defined:

FAN_CLOSE

A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).

FAN_MOVE

A file or directory has been moved (FAN_MOVED_FROM|FAN_MOVED_TO).

The filesystem object to be marked is determined by the file descriptor dirfd and the pathname specified in
pathname:

* If pathname is NULL, dirfd defines the filesystem object to be marked.

* If pathname is NULL, and dirfd takes the special value AT_FDCWD, the current working directory is
to be marked.

* If pathname is absolute, it defines the filesystem object to be marked, and dirfd is ignored.

* If pathname is relative, and dirfd does not have the value AT_FDCWD, then the filesystem object to be
marked is determined by interpreting pathname relative the directory referred to by dirfd .

* If pathname is relative, and dirfd has the value AT_FDCWD, then the filesystem object to be marked
is determined by interpreting pathname relative the current working directory.

RETURN VALUE
On success, fanotify_mark() returns 0. On error, −1 is returned, and errno is set to indicate the error.

ERRORS
EBADF

An invalid file descriptor was passed in fanotify_fd .

EINVAL

An invalid value was passed in flags or mask, or fanotify_fd was not an fanotify file descriptor.

EINVAL

The fanotify file descriptor was opened with FAN_CLASS_NOTIF or FAN_REPORT_FID and
mask contains a flag for permission events (FAN_OPEN_PERM or FAN_ACCESS_PERM).

ENODEV

The filesystem object indicated by pathname is not associated with a filesystem that supports fsid

(e.g., tmpfs(5)). This error can be returned only when an fanotify file descriptor returned by fan-

otify_init(2) has been created with FAN_REPORT_FID.

ENOENT

The filesystem object indicated by dirfd and pathname does not exist. This error also occurs when
trying to remove a mark from an object which is not marked.

ENOMEM

The necessary memory could not be allocated.

ENOSPC

The number of marks exceeds the limit of 8192 and the FAN_UNLIMITED_MARKS flag was
not specified when the fanotify file descriptor was created with fanotify_init(2).

Linux 2019-08-02 3



FANOTIFY_MARK(2) Linux Programmer’s Manual FANOTIFY_MARK(2)

ENOSYS

This kernel does not implement fanotify_mark(). The fanotify API is available only if the kernel
was configured with CONFIG_FANOTIFY.

ENOTDIR

flags contains FAN_MARK_ONLYDIR, and dirfd and pathname do not specify a directory.

EOPNOTSUPP

The object indicated by pathname is associated with a filesystem that does not support the encod-
ing of file handles. This error can be returned only when an fanotify file descriptor returned by
fanotify_init(2) has been created with FAN_REPORT_FID.

EXDEV

The filesystem object indicated by pathname resides within a filesystem subvolume (e.g., btrfs(5))
which uses a different fsid than its root superblock. This error can be returned only when an fan-
otify file descriptor returned by fanotify_init(2) has been created with FAN_REPORT_FID.

VERSIONS
fanotify_mark() was introduced in version 2.6.36 of the Linux kernel and enabled in version 2.6.37.

CONFORMING TO
This system call is Linux-specific.

NOTES
FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the mask, events of these
types will be returned only when the direct execution of a program occurs. More specifically, this means
that events of these types will be generated for files that are opened using execve(2), execveat(2), or
uselib(2). Events of these types will not be raised in the situation where an interpreter is passed (or reads) a
script file for interpretation.

Additionally, if a mark has also been placed on the Linux dynamic linker, a user should also expect to re-
ceive an event for it when an ELF object has been successfully opened using execve(2) or execveat(2).

For example, if the following ELF binary were to be invoked and a FAN_OPEN_EXEC mark has been
placed on /:

$ /bin/echo foo

The listening application in this case would receive FAN_OPEN_EXEC ev ents for both the ELF binary
and interpreter, respectively:

/bin/echo

/lib64/ld-linux-x86-64.so.2

BUGS
The following bugs were present in Linux kernels before version 3.16:

* If flags contains FAN_MARK_FLUSH, dirfd and pathname must specify a valid filesystem object,
ev en though this object is not used.

* readdir(2) does not generate a FAN_ACCESS ev ent.

* If fanotify_mark() is called with FAN_MARK_FLUSH, flags is not checked for invalid values.

SEE ALSO
fanotify_init(2), fanotify(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 4


