
FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

NAME
fanotify − monitoring filesystem events

DESCRIPTION
The fanotify API provides notification and interception of filesystem events. Use cases include virus scan-
ning and hierarchical storage management. Currently, only a limited set of events is supported. In particu-
lar, there is no support for create, delete, and move events. (See inotify(7) for details of an API that does
notify those events.)

Additional capabilities compared to the inotify(7) API include the ability to monitor all of the objects in a
mounted filesystem, the ability to make access permission decisions, and the possibility to read or modify
files before access by other applications.

The following system calls are used with this API: fanotify_init(2), fanotify_mark(2), read(2), write(2),
and close(2).

fanotify_init(), fanotify_mark(), and notification groups

The fanotify_init(2) system call creates and initializes an fanotify notification group and returns a file de-
scriptor referring to it.

An fanotify notification group is a kernel-internal object that holds a list of files, directories, filesystems,
and mount points for which events shall be created.

For each entry in an fanotify notification group, two bit masks exist: the mark mask and the ignore mask.
The mark mask defines file activities for which an event shall be created. The ignore mask defines activi-
ties for which no event shall be generated. Having these two types of masks permits a filesystem, mount
point, or directory to be marked for receiving events, while at the same time ignoring events for specific ob-
jects under a mount point or directory.

The fanotify_mark(2) system call adds a file, directory, filesystem or mount point to a notification group
and specifies which events shall be reported (or ignored), or removes or modifies such an entry.

A possible usage of the ignore mask is for a file cache. Events of interest for a file cache are modification
of a file and closing of the same. Hence, the cached directory or mount point is to be marked to receive
these events. After receiving the first event informing that a file has been modified, the corresponding
cache entry will be invalidated. No further modification events for this file are of interest until the file is
closed. Hence, the modify event can be added to the ignore mask. Upon receiving the close event, the
modify event can be removed from the ignore mask and the file cache entry can be updated.

The entries in the fanotify notification groups refer to files and directories via their inode number and to
mounts via their mount ID. If files or directories are renamed or moved within the same mount, the respec-
tive entries survive. If files or directories are deleted or moved to another mount or if filesystems or mounts
are unmounted, the corresponding entries are deleted.

The event queue

As events occur on the filesystem objects monitored by a notification group, the fanotify system generates
ev ents that are collected in a queue. These events can then be read (using read(2) or similar) from the fan-
otify file descriptor returned by fanotify_init(2).

Tw o types of events are generated: notification ev ents and permission ev ents. Notification ev ents are
merely informative and require no action to be taken by the receiving application with the exception being
that the file descriptor provided within a generic event must be closed. The closing of file descriptors for
each event applies only to applications that have initialized fanotify without using FAN_REPORT_FID

(see below). Permission ev ents are requests to the receiving application to decide whether permission for a
file access shall be granted. For these events, the recipient must write a response which decides whether ac-
cess is granted or not.

An event is removed from the event queue of the fanotify group when it has been read. Permission events
that have been read are kept in an internal list of the fanotify group until either a permission decision has
been taken by writing to the fanotify file descriptor or the fanotify file descriptor is closed.

Linux 2019-08-02 1

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

Reading fanotify events

Calling read(2) for the file descriptor returned by fanotify_init(2) blocks (if the flag FAN_NONBLOCK

is not specified in the call to fanotify_init(2)) until either a file event occurs or the call is interrupted by a
signal (see signal(7)).

The use of the FAN_REPORT_FID flag in fanotify_init(2) influences what data structures are returned to
the event listener for each event. After a successful read(2), the read buffer contains one or more of the fol-
lowing structures:

struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;

};

In the case where FAN_REPORT_FID is supplied as one of the flags to fanotify_init(2), you should also
expect to receive the structure detailed below following the generic fanotify_event_metadata structure
within the read buffer:

struct fanotify_event_info_fid {
struct fanotify_event_info_header hdr;
__kernel_fsid_t fsid;
unsigned char file_handle[0];

};

For performance reasons, it is recommended to use a large buffer size (for example, 4096 bytes), so that
multiple events can be retrieved by a single read(2).

The return value of read(2) is the number of bytes placed in the buffer, or −1 in case of an error (but see
BUGS).

The fields of the fanotify_event_metadata structure are as follows:

event_len

This is the length of the data for the current event and the offset to the next event in the buffer.
Without FAN_REPORT_FID, the value of event_len is always FAN_EVENT_META-

DATA_LEN. With FAN_REPORT_FID, event_len also includes the variable length file identi-
fier.

vers This field holds a version number for the structure. It must be compared to FANOTIFY_META-

DATA_VERSION to verify that the structures returned at run time match the structures defined at
compile time. In case of a mismatch, the application should abandon trying to use the fanotify file
descriptor.

reserved

This field is not used.

metadata_len

This is the length of the structure. The field was introduced to facilitate the implementation of op-
tional headers per event type. No such optional headers exist in the current implementation.

mask This is a bit mask describing the event (see below).

fd This is an open file descriptor for the object being accessed, or FAN_NOFD if a queue overflow
occurred. If the fanotify file descriptor has been initialized using FAN_REPORT_FID, applica-
tions should expect this value to be set to FAN_NOFD for each event that is received. The file de-
scriptor can be used to access the contents of the monitored file or directory. The reading applica-
tion is responsible for closing this file descriptor.

Linux 2019-08-02 2

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

When calling fanotify_init(2), the caller may specify (via the event_f_flags argument) various file
status flags that are to be set on the open file description that corresponds to this file descriptor. In
addition, the (kernel-internal) FMODE_NONOTIFY file status flag is set on the open file de-
scription. This flag suppresses fanotify event generation. Hence, when the receiver of the fanotify
ev ent accesses the notified file or directory using this file descriptor, no additional events will be
created.

pid If flag FAN_REPORT_TID was set in fanotify_init(2), this is the TID of the thread that caused
the event. Otherwise, this the PID of the process that caused the event.

A program listening to fanotify events can compare this PID to the PID returned by getpid(2), to determine
whether the event is caused by the listener itself, or is due to a file access by another process.

The bit mask in mask indicates which events have occurred for a single filesystem object. Multiple bits
may be set in this mask, if more than one event occurred for the monitored filesystem object. In particular,
consecutive events for the same filesystem object and originating from the same process may be merged
into a single event, with the exception that two permission events are never merged into one queue entry.

The bits that may appear in mask are as follows:

FAN_ACCESS

A file or a directory (but see BUGS) was accessed (read).

FAN_OPEN

A file or a directory was opened.

FAN_OPEN_EXEC

A file was opened with the intent to be executed. See NOTES in fanotify_mark(2) for additional
details.

FAN_ATTRIB

A file or directory metadata was changed.

FAN_CREATE

A child file or directory was created in a watched parent.

FAN_DELETE

A child file or directory was deleted in a watched parent.

FAN_DELETE_SELF

A watched file or directory was deleted.

FAN_MOVED_FROM

A file or directory has been moved from a watched parent directory.

FAN_MOVED_TO

A file or directory has been moved to a watched parent directory.

FAN_MOVE_SELF

A watched file or directory was moved.

FAN_MODIFY

A file was modified.

FAN_CLOSE_WRITE

A file that was opened for writing (O_WRONLY or O_RDWR) was closed.

FAN_CLOSE_NOWRITE

A file or directory that was opened read-only (O_RDONLY) was closed.

FAN_Q_OVERFLOW

The event queue exceeded the limit of 16384 entries. This limit can be overridden by specifying
the FAN_UNLIMITED_QUEUE flag when calling fanotify_init(2).

Linux 2019-08-02 3

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

FAN_ACCESS_PERM

An application wants to read a file or directory, for example using read(2) or readdir(2). The
reader must write a response (as described below) that determines whether the permission to ac-
cess the filesystem object shall be granted.

FAN_OPEN_PERM

An application wants to open a file or directory. The reader must write a response that determines
whether the permission to open the filesystem object shall be granted.

FAN_OPEN_EXEC_PERM

An application wants to open a file for execution. The reader must write a response that deter-
mines whether the permission to open the filesystem object for execution shall be granted. See
NOTES in fanotify_mark(2) for additional details.

To check for any close event, the following bit mask may be used:

FAN_CLOSE

A file was closed. This is a synonym for:

FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

To check for any move event, the following bit mask may be used:

FAN_MOVE

A file or directory was moved. This is a synonym for:

FAN_MOVED_FROM | FAN_MOVED_TO

The fields of the fanotify_event_info_fid structure are as follows:

hdr This is a structure of type fanotify_event_info_header. It is a generic header that contains infor-
mation used to describe additional information attached to the event. For example, when an fan-
otify file descriptor is created using FAN_REPORT_FID, the info_type field of this header is set
to FAN_EVENT_INFO_TYPE_FID. Event listeners can use this field to check that the addi-
tional information received for an event is of the correct type. Additionally, the fan-

otify_event_info_header also contains a len field. In the current implementation, the value of len

is always (event_len − FAN_EVENT_METADAT A_LEN).

fsid This is a unique identifier of the filesystem containing the object associated with the event. It is a
structure of type __kernel_fsid_t and contains the same value as f_fsid when calling statfs(2).

file_handle

This is a variable length structure of type file_handle. It is an opaque handle that corresponds to a
specified object on a filesystem as returned by name_to_handle_at(2). It can be used to uniquely
identify a file on a filesystem and can be passed as an argument to open_by_handle_at(2). Note
that for directory entry events, such as FAN_CREATE, FAN_DELETE, and FAN_MOVE, the
file_handle describes the modified directory and not the created/deleted/moved child object. The
ev ents FAN_ATTRIB, FAN_DELETE_SELF, and FAN_MOVE_SELF will carry the file_han-

dle information for the child object if the child object is being watched.

The following macros are provided to iterate over a buffer containing fanotify event metadata returned by a
read(2) from an fanotify file descriptor:

FAN_EVENT_OK(meta, len)

This macro checks the remaining length len of the buffer meta against the length of the metadata
structure and the event_len field of the first metadata structure in the buffer.

FAN_EVENT_NEXT(meta, len)

This macro uses the length indicated in the event_len field of the metadata structure pointed to by
meta to calculate the address of the next metadata structure that follows meta. len is the number
of bytes of metadata that currently remain in the buffer. The macro returns a pointer to the next
metadata structure that follows meta, and reduces len by the number of bytes in the metadata
structure that has been skipped over (i.e., it subtracts meta−>event_len from len).

Linux 2019-08-02 4

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

In addition, there is:

FAN_EVENT_METADAT A_LEN

This macro returns the size (in bytes) of the structure fanotify_event_metadata. This is the mini-
mum size (and currently the only size) of any event metadata.

Monitoring an fanotify file descriptor for events

When an fanotify event occurs, the fanotify file descriptor indicates as readable when passed to epoll(7),
poll(2), or select(2).

Dealing with permission events

For permission events, the application must write(2) a structure of the following form to the fanotify file
descriptor:

struct fanotify_response {
__s32 fd;
__u32 response;

};

The fields of this structure are as follows:

fd This is the file descriptor from the structure fanotify_event_metadata.

response

This field indicates whether or not the permission is to be granted. Its value must be either
FAN_ALLOW to allow the file operation or FAN_DENY to deny the file operation.

If access is denied, the requesting application call will receive an EPERM error.

Closing the fanotify file descriptor

When all file descriptors referring to the fanotify notification group are closed, the fanotify group is re-
leased and its resources are freed for reuse by the kernel. Upon close(2), outstanding permission events
will be set to allowed.

/proc/[pid]/fdinfo

The file /proc/[pid]/fdinfo/[fd] contains information about fanotify marks for file descriptor fd of process
pid . See proc(5) for details.

ERRORS
In addition to the usual errors for read(2), the following errors can occur when reading from the fanotify
file descriptor:

EINVAL

The buffer is too small to hold the event.

EMFILE

The per-process limit on the number of open files has been reached. See the description of
RLIMIT_NOFILE in getrlimit(2).

ENFILE

The system-wide limit on the total number of open files has been reached. See
/proc/sys/fs/file−max in proc(5).

ETXTBSY

This error is returned by read(2) if O_RDWR or O_WRONLY was specified in the event_f_flags

argument when calling fanotify_init(2) and an event occurred for a monitored file that is currently
being executed.

In addition to the usual errors for write(2), the following errors can occur when writing to the fanotify file
descriptor:

EINVAL

Fanotify access permissions are not enabled in the kernel configuration or the value of response in
the response structure is not valid.

Linux 2019-08-02 5

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

ENOENT

The file descriptor fd in the response structure is not valid. This may occur when a response for
the permission event has already been written.

VERSIONS
The fanotify API was introduced in version 2.6.36 of the Linux kernel and enabled in version 2.6.37. Fd-
info support was added in version 3.8.

CONFORMING TO
The fanotify API is Linux-specific.

NOTES
The fanotify API is available only if the kernel was built with the CONFIG_FANOTIFY configuration op-
tion enabled. In addition, fanotify permission handling is available only if the CONFIG_FAN-

OTIFY_ACCESS_PERMISSIONS configuration option is enabled.

Limitations and caveats

Fanotify reports only events that a user-space program triggers through the filesystem API. As a result, it
does not catch remote events that occur on network filesystems.

The fanotify API does not report file accesses and modifications that may occur because of mmap(2),
msync(2), and munmap(2).

Events for directories are created only if the directory itself is opened, read, and closed. Adding, removing,
or changing children of a marked directory does not create events for the monitored directory itself.

Fanotify monitoring of directories is not recursive: to monitor subdirectories under a directory, additional
marks must be created. (But note that the fanotify API provides no way of detecting when a subdirectory
has been created under a marked directory, which makes recursive monitoring difficult.) Monitoring
mounts offers the capability to monitor a whole directory tree. Monitoring filesystems offers the capability
to monitor changes made from any mount of a filesystem instance.

The event queue can overflow. In this case, events are lost.

BUGS
Before Linux 3.19, fallocate(2) did not generate fanotify events. Since Linux 3.19, calls to fallocate(2)
generate FAN_MODIFY ev ents.

As of Linux 3.17, the following bugs exist:

* On Linux, a filesystem object may be accessible through multiple paths, for example, a part of a filesys-
tem may be remounted using the −−bind option of mount(8). A listener that marked a mount will be
notified only of events that were triggered for a filesystem object using the same mount. Any other
ev ent will pass unnoticed.

* When an event is generated, no check is made to see whether the user ID of the receiving process has
authorization to read or write the file before passing a file descriptor for that file. This poses a security
risk, when the CAP_SYS_ADMIN capability is set for programs executed by unprivileged users.

* If a call to read(2) processes multiple events from the fanotify queue and an error occurs, the return
value will be the total length of the events successfully copied to the user-space buffer before the error
occurred. The return value will not be −1, and errno will not be set. Thus, the reading application has
no way to detect the error.

EXAMPLE
The two example programs below demonstrate the usage of the fanotify API.

Example program: fanotify_example.c

The first program is an example of fanotify being used with its event object information passed in the form
of a file descriptor. The program marks the mount point passed as a command-line argument and waits for
ev ents of type FAN_OPEN_PERM and FAN_CLOSE_WRITE. When a permission event occurs, a
FAN_ALLOW response is given.

The following shell session shows an example of running this program. This session involved editing the

Linux 2019-08-02 6

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

file /home/user/temp/notes. Before the file was opened, a FAN_OPEN_PERM ev ent occurred. After the
file was closed, a FAN_CLOSE_WRITE ev ent occurred. Execution of the program ends when the user
presses the ENTER key.

./fanotify_example /home

Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes

Listening for events stopped.

Program source: fanotify_example.c

#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fanotify.h>
#include <unistd.h>

/* Read all available fanotify events from the file descriptor 'fd' */

static void
handle_events(int fd)
{

const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t len;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;

/* Loop while events can be read from fanotify file descriptor */

for (;;) {

/* Read some events */

len = read(fd, (void *) &buf, sizeof(buf));
if (len == −1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* Check if end of available data reached */

if (len <= 0)
break;

/* Point to the first event in the buffer */

Linux 2019-08-02 7

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

metadata = buf;

/* Loop over all events in the buffer */

while (FAN_EVENT_OK(metadata, len)) {

/* Check that run−time and compile−time structures match */

if (metadata−>vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,

"Mismatch of fanotify metadata version.\n");
exit(EXIT_FAILURE);

}

/* metadata−>fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */

if (metadata−>fd >= 0) {

/* Handle open permission event */

if (metadata−>mask & FAN_OPEN_PERM) {
printf("FAN_OPEN_PERM: ");

/* Allow file to be opened */

response.fd = metadata−>fd;
response.response = FAN_ALLOW;
write(fd, &response,

sizeof(struct fanotify_response));
}

/* Handle closing of writable file event */

if (metadata−>mask & FAN_CLOSE_WRITE)
printf("FAN_CLOSE_WRITE: ");

/* Retrieve and print pathname of the accessed file */

snprintf(procfd_path, sizeof(procfd_path),
"/proc/self/fd/%d", metadata−>fd);

path_len = readlink(procfd_path, path,
sizeof(path) − 1);

if (path_len == −1) {
perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("File %s\n", path);

/* Close the file descriptor of the event */

Linux 2019-08-02 8

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

close(metadata−>fd);
}

/* Advance to next event */

metadata = FAN_EVENT_NEXT(metadata, len);
}

}
}

int
main(int argc, char *argv[])
{

char buf;
int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];

/* Check mount point is supplied */

if (argc != 2) {
fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Press enter key to terminate.\n");

/* Create the file descriptor for accessing the fanotify API */

fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);

if (fd == −1) {
perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Mark the mount for:
− permission events before opening files
− notification events after closing a write−enabled
file descriptor */

if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
argv[1]) == −1) {

perror("fanotify_mark");
exit(EXIT_FAILURE);

}

/* Prepare for polling */

nfds = 2;

/* Console input */

Linux 2019-08-02 9

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

fds[0].fd = STDIN_FILENO;
fds[0].events = POLLIN;

/* Fanotify input */

fds[1].fd = fd;
fds[1].events = POLLIN;

/* This is the loop to wait for incoming events */

printf("Listening for events.\n");

while (1) {
poll_num = poll(fds, nfds, −1);
if (poll_num == −1) {

if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */

perror("poll"); /* Unexpected error */
exit(EXIT_FAILURE);

}

if (poll_num > 0) {
if (fds[0].revents & POLLIN) {

/* Console input is available: empty stdin and quit */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;

break;
}

if (fds[1].revents & POLLIN) {

/* Fanotify events are available */

handle_events(fd);
}

}
}

printf("Listening for events stopped.\n");
exit(EXIT_SUCCESS);

}

Example program: fanotify_fid.c

The second program is an example of fanotify being used with FAN_REPORT_FID enabled. The pro-
gram marks the filesystem object that is passed as a command-line argument and waits until an event of
type FAN_CREATE has occurred. The event mask indicates which type of filesystem object—either a file
or a directory—was created. Once all events have been read from the buffer and processed accordingly, the
program simply terminates.

The following shell sessions show two different invocations of this program, with different actions per-
formed on a watched object.

The first session shows a mark being placed on /home/user. This is followed by the creation of a regular

Linux 2019-08-02 10

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

file, /home/user/testfile.txt. This results in a FAN_CREATE ev ent being created and reported against the
file’s parent watched directory object. Program execution ends once all events captured within the buffer
have been processed. Program execution ends once all events captured within the buffer are processed.

./fanotify_fid /home/user

Listening for events.
FAN_CREATE (file created): Directory /home/user has been modified.
All events processed successfully. Program exiting.

$ touch /home/user/testing # In another terminal

The second session shows a mark being placed on /home/user. This is followed by the creation of a direc-
tory, /home/user/testdir. This specific action results in the program producing a FAN_CREATE and
FAN_ONDIR ev ent.

./fanotify_fid /home/user

Listening for events.
FAN_CREATE | FAN_ONDIR (subdirectory created):

Directory /home/user has been modified.
All events processed successfully. Program exiting.

$ mkdir −p /home/user/testing # In another terminal

Program source: fanotify_fid.c

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fanotify.h>
#include <unistd.h>

#define BUF_SIZE 256

int
main(int argc, char **argv)
{

int fd, ret, event_fd;
ssize_t len, path_len;
char path[PATH_MAX];
char procfd_path[PATH_MAX];
char events_buf[BUF_SIZE];
struct file_handle *file_handle;
struct fanotify_event_metadata *metadata;
struct fanotify_event_info_fid *fid;

if (argc != 2) {
fprintf(stderr, "Invalid number of command line arguments.\n");
exit(EXIT_FAILURE);

}

/* Create an fanotify file descriptor with FAN_REPORT_FID as a flag
so that program can receive fid events. */

Linux 2019-08-02 11

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_FID, 0);
if (fd == −1) {

perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Place a mark on the filesystem object supplied in argv[1]. */

ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,
FAN_CREATE | FAN_ONDIR,
AT_FDCWD, argv[1]);

if (ret == −1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);

}

printf("Listening for events.\n");

/* Read events from the event queue into a buffer */

len = read(fd, (void *) &events_buf, sizeof(events_buf));
if (len == −1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* Process all events within the buffer */

for (metadata = (struct fanotify_event_metadata *) events_buf;
FAN_EVENT_OK(metadata, len);
metadata = FAN_EVENT_NEXT(metadata, len)) {

fid = (struct fanotify_event_info_fid *) (metadata + 1);
file_handle = (struct file_handle *) fid−>handle;

/* Ensure that the event info is of the correct type */

if (fid−>hdr.info_type != FAN_EVENT_INFO_TYPE_FID) {
fprintf(stderr, "Received unexpected event info type.\n");
exit(EXIT_FAILURE);

}

if (metadata−>mask == FAN_CREATE)
printf("FAN_CREATE (file created):");

if (metadata−>mask == FAN_CREATE | FAN_ONDIR)
printf("FAN_CREATE | FAN_ONDIR (subdirectory created):");

/* metadata−>fd is set to FAN_NOFD when FAN_REPORT_FID is enabled.
To obtain a file descriptor for the file object corresponding to
an event you can use the struct file_handle that's provided
within the fanotify_event_info_fid in conjunction with the
open_by_handle_at(2) system call. A check for ESTALE is done
to accommodate for the situation where the file handle for the
object was deleted prior to this system call. */

Linux 2019-08-02 12

FANOTIFY(7) Linux Programmer’s Manual FANOTIFY(7)

event_fd = open_by_handle_at(AT_FDCWD, file_handle, O_RDONLY);
if (ret == −1) {

if (errno == ESTALE) {
printf("File handle is no longer valid. "

"File has been deleted\n");
continue;

} else {
perror("open_by_handle_at");
exit(EXIT_FAILURE);

}
}

snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",
event_fd);

/* Retrieve and print the path of the modified dentry */

path_len = readlink(procfd_path, path, sizeof(path) − 1);
if (path_len == −1) {

perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("\tDirectory '%s' has been modified.\n", path);

/* Close associated file descriptor for this event */

close(event_fd);
}

printf("All events processed successfully. Program exiting.\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
fanotify_init(2), fanotify_mark(2), inotify(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2019-08-02 13

