
EPOLL_CTL(2) Linux Programmer’s Manual EPOLL_CTL(2)

NAME
epoll_ctl − control interface for an epoll file descriptor

SYNOPSIS
#include <sys/epoll.h>

int epoll_ctl(int epfd , int op, int fd , struct epoll_event *event);

DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the epoll(7) instance referred

to by the file descriptor epfd . It requests that the operation op be performed for the target file descriptor,

fd .

Valid values for the op argument are:

EPOLL_CTL_ADD

Add fd to the interest list and associate the settings specified in event with the internal file linked

to fd .

EPOLL_CTL_MOD

Change the settings associated with fd in the interest list to the new settings specified in event.

EPOLL_CTL_DEL

Remove (deregister) the target file descriptor fd from the interest list. The event argument is ig-

nored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd . The struct epoll_event is defined

as:

typedef union epoll_data {

void *ptr;

int fd;

uint32_t u32;

uint64_t u64;

} epoll_data_t;

struct epoll_event {

uint32_t events; /* Epoll events */

epoll_data_t data; /* User data variable */

};

The events member is a bit mask composed by ORing together zero or more of the following available

ev ent types:

EPOLLIN

The associated file is available for read(2) operations.

EPOLLOUT

The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)

Stream socket peer closed connection, or shut down writing half of connection. (This flag is espe-

cially useful for writing simple code to detect peer shutdown when using Edge Triggered monitor-

ing.)

EPOLLPRI

There is an exceptional condition on the file descriptor. See the discussion of POLLPRI in

poll(2).

EPOLLERR

Error condition happened on the associated file descriptor. This event is also reported for the write

end of a pipe when the read end has been closed. epoll_wait(2) will always report for this event; it

is not necessary to set it in events.

Linux 2019-03-06 1



EPOLL_CTL(2) Linux Programmer’s Manual EPOLL_CTL(2)

EPOLLHUP

Hang up happened on the associated file descriptor. epoll_wait(2) will always wait for this event;

it is not necessary to set it in events.

Note that when reading from a channel such as a pipe or a stream socket, this event merely indi-

cates that the peer closed its end of the channel. Subsequent reads from the channel will return 0

(end of file) only after all outstanding data in the channel has been consumed.

EPOLLET

Sets the Edge Triggered behavior for the associated file descriptor. The default behavior for epoll

is Level Triggered. See epoll(7) for more detailed information about Edge and Level Triggered

ev ent distribution architectures.

EPOLLONESHOT (since Linux 2.6.2)

Sets the one-shot behavior for the associated file descriptor. This means that after an event is

pulled out with epoll_wait(2) the associated file descriptor is internally disabled and no other

ev ents will be reported by the epoll interface. The user must call epoll_ctl() with

EPOLL_CTL_MOD to rearm the file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)

If EPOLLONESHOT and EPOLLET are clear and the process has the CAP_BLOCK_SUS-

PEND capability, ensure that the system does not enter "suspend" or "hibernate" while this event

is pending or being processed. The event is considered as being "processed" from the time when it

is returned by a call to epoll_wait(2) until the next call to epoll_wait(2) on the same epoll(7) file

descriptor, the closure of that file descriptor, the removal of the event file descriptor with

EPOLL_CTL_DEL, or the clearing of EPOLLWAKEUP for the event file descriptor with

EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)

Sets an exclusive wakeup mode for the epoll file descriptor that is being attached to the target file

descriptor, fd . When a wakeup event occurs and multiple epoll file descriptors are attached to the

same target file using EPOLLEXCLUSIVE, one or more of the epoll file descriptors will receive

an event with epoll_wait(2). The default in this scenario (when EPOLLEXCLUSIVE is not set)

is for all epoll file descriptors to receive an event. EPOLLEXCLUSIVE is thus useful for avoid-

ing thundering herd problems in certain scenarios.

If the same file descriptor is in multiple epoll instances, some with the EPOLLEXCLUSIVE flag,

and others without, then events will be provided to all epoll instances that did not specify

EPOLLEXCLUSIVE, and at least one of the epoll instances that did specify EPOLLEXCLU-

SIVE.

The following values may be specified in conjunction with EPOLLEXCLUSIVE: EPOLLIN,

EPOLLOUT, EPOLLWAKEUP, and EPOLLET. EPOLLHUP and EPOLLERR can also be

specified, but this is not required: as usual, these events are always reported if they occur, reg ard-

less of whether they are specified in events. Attempts to specify other values in events yield the er-

ror EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation; attempts to em-

ploy it with EPOLL_CTL_MOD yield an error. If EPOLLEXCLUSIVE has been set using

epoll_ctl(), then a subsequent EPOLL_CTL_MOD on the same epfd , fd pair yields an error. A

call to epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the target file de-

scriptor fd as an epoll instance will likewise fail. The error in all of these cases is EINVAL.

RETURN VALUE
When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns −1 and errno is set ap-

propriately.

ERRORS

Linux 2019-03-06 2



EPOLL_CTL(2) Linux Programmer’s Manual EPOLL_CTL(2)

EBADF

epfd or fd is not a valid file descriptor.

EEXIST

op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already registered with this

epoll instance.

EINVAL

epfd is not an epoll file descriptor, or fd is the same as epfd , or the requested operation op is not

supported by this interface.

EINVAL

An invalid event type was specified along with EPOLLEXCLUSIVE in events.

EINVAL

op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL

op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously been applied to

this epfd , fd pair.

EINVAL

EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

ELOOP

fd refers to an epoll instance and this EPOLL_CTL_ADD operation would result in a circular

loop of epoll instances monitoring one another.

ENOENT

op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered with this epoll in-

stance.

ENOMEM

There was insufficient memory to handle the requested op control operation.

ENOSPC

The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered while trying to regis-

ter (EPOLL_CTL_ADD) a new file descriptor on an epoll instance. See epoll(7) for further de-

tails.

EPERM

The target file fd does not support epoll. This error can occur if fd refers to, for example, a regu-

lar file or a directory.

VERSIONS
epoll_ctl() was added to the kernel in version 2.6.

CONFORMING TO
epoll_ctl() is Linux-specific. Library support is provided in glibc starting with version 2.3.2.

NOTES
The epoll interface supports all file descriptors that support poll(2).

BUGS
In kernel versions before 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in event,

ev en though this argument is ignored. Since Linux 2.6.9, event can be specified as NULL when using

EPOLL_CTL_DEL. Applications that need to be portable to kernels before 2.6.9 should specify a non-

null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the CAP_BLOCK_SUSPEND ca-

pability, then the EPOLLWAKEUP flag is silently ignored . This unfortunate behavior is necessary be-

cause no validity checks were performed on the flags argument in the original implementation, and the ad-

dition of the EPOLLWAKEUP with a check that caused the call to fail if the caller did not have the

CAP_BLOCK_SUSPEND capability caused a breakage in at least one existing user-space application that

Linux 2019-03-06 3



EPOLL_CTL(2) Linux Programmer’s Manual EPOLL_CTL(2)

happened to randomly (and uselessly) specify this bit. A robust application should therefore double check

that it has the CAP_BLOCK_SUSPEND capability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO
epoll_create(2), epoll_wait(2), poll(2), epoll(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 4


