
ELF(5) Linux Programmer’s Manual ELF(5)

NAME
elf − format of Executable and Linking Format (ELF) files

SYNOPSIS
#include <elf.h>

DESCRIPTION
The header file <elf.h> defines the format of ELF executable binary files. Amongst these files are normal

executable files, relocatable object files, core files, and shared objects.

An executable file using the ELF file format consists of an ELF header, followed by a program header table

or a section header table, or both. The ELF header is always at offset zero of the file. The program header

table and the section header table’s offset in the file are defined in the ELF header. The two tables describe

the rest of the particularities of the file.

This header file describes the above mentioned headers as C structures and also includes structures for dy-

namic sections, relocation sections and symbol tables.

Basic types
The following types are used for N-bit architectures (N=32,64, ElfN stands for Elf32 or Elf64, uintN_t

stands for uint32_t or uint64_t):

ElfN_Addr Unsigned program address, uintN_t

ElfN_Off Unsigned file offset, uintN_t

ElfN_Section Unsigned section index, uint16_t

ElfN_Versym Unsigned version symbol information, uint16_t

Elf_Byte unsigned char

ElfN_Half uint16_t

ElfN_Sword int32_t

ElfN_Word uint32_t

ElfN_Sxword int64_t

ElfN_Xword uint64_t

(Note: the *BSD terminology is a bit different. There, Elf64_Half is twice as large as Elf32_Half , and

Elf64Quarter is used for uint16_t. In order to avoid confusion these types are replaced by explicit ones in

the below.)

All data structures that the file format defines follow the "natural" size and alignment guidelines for the rel-

evant class. If necessary, data structures contain explicit padding to ensure 4-byte alignment for 4-byte ob-

jects, to force structure sizes to a multiple of 4, and so on.

ELF header (Ehdr)
The ELF header is described by the type Elf32_Ehdr or Elf64_Ehdr:

#define EI_NIDENT 16

typedef struct {

unsigned char e_ident[EI_NIDENT];

uint16_t e_type;

uint16_t e_machine;

uint32_t e_version;

ElfN_Addr e_entry;

ElfN_Off e_phoff;

ElfN_Off e_shoff;

uint32_t e_flags;

uint16_t e_ehsize;

uint16_t e_phentsize;

uint16_t e_phnum;

uint16_t e_shentsize;

uint16_t e_shnum;

Linux 2019-05-09 1



ELF(5) Linux Programmer’s Manual ELF(5)

uint16_t e_shstrndx;

} ElfN_Ehdr;

The fields have the following meanings:

e_ident This array of bytes specifies how to interpret the file, independent of the processor or the file’s

remaining contents. Within this array everything is named by macros, which start with the pre-

fix EI_ and may contain values which start with the prefix ELF. The following macros are de-

fined:

EI_MAG0
The first byte of the magic number. It must be filled with ELFMAG0. (0: 0x7f)

EI_MAG1
The second byte of the magic number. It must be filled with ELFMAG1. (1: 'E')

EI_MAG2
The third byte of the magic number. It must be filled with ELFMAG2. (2: 'L')

EI_MAG3
The fourth byte of the magic number. It must be filled with ELFMAG3. (3: 'F')

EI_CLASS
The fifth byte identifies the architecture for this binary:

ELFCLASSNONE
This class is invalid.

ELFCLASS32 This defines the 32-bit architecture. It supports machines with

files and virtual address spaces up to 4 Gigabytes.

ELFCLASS64 This defines the 64-bit architecture.

EI_DAT A
The sixth byte specifies the data encoding of the processor-specific data in the file.

Currently, these encodings are supported:

ELFDAT ANONE
Unknown data format.

ELFDAT A2LSB
Tw o’s complement, little-endian.

ELFDAT A2MSB
Tw o’s complement, big-endian.

EI_VERSION
The seventh byte is the version number of the ELF specification:

EV_NONE Invalid version.

EV_CURRENT
Current version.

EI_OSABI
The eighth byte identifies the operating system and ABI to which the object is tar-

geted. Some fields in other ELF structures have flags and values that have plat-

form-specific meanings; the interpretation of those fields is determined by the value

of this byte. For example:

ELFOSABI_NONE Same as ELFOSABI_SYSV

ELFOSABI_SYSV UNIX System V ABI

ELFOSABI_HPUX HP-UX ABI

ELFOSABI_NETBSD NetBSD ABI

ELFOSABI_LINUX Linux ABI

ELFOSABI_SOLARIS Solaris ABI

ELFOSABI_IRIX IRIX ABI

Linux 2019-05-09 2



ELF(5) Linux Programmer’s Manual ELF(5)

ELFOSABI_FREEBSD
FreeBSD ABI

ELFOSABI_TRU64 TRU64 UNIX ABI

ELFOSABI_ARM ARM architecture ABI

ELFOSABI_STANDALONE
Stand-alone (embedded) ABI

EI_ABIVERSION
The ninth byte identifies the version of the ABI to which the object is targeted.

This field is used to distinguish among incompatible versions of an ABI. The inter-

pretation of this version number is dependent on the ABI identified by the EI_OS-
ABI field. Applications conforming to this specification use the value 0.

EI_PAD Start of padding. These bytes are reserved and set to zero. Programs which read

them should ignore them. The value for EI_PAD will change in the future if cur-

rently unused bytes are given meanings.

EI_NIDENT
The size of the e_ident array.

e_type This member of the structure identifies the object file type:

ET_NONE An unknown type.

ET_REL A relocatable file.

ET_EXEC An executable file.

ET_DYN A shared object.

ET_CORE A core file.

e_machine This member specifies the required architecture for an individual file. For example:

EM_NONE An unknown machine

EM_M32 AT&T WE 32100

EM_SPARC Sun Microsystems SPARC

EM_386 Intel 80386

EM_68K Motorola 68000

EM_88K Motorola 88000

EM_860 Intel 80860

EM_MIPS MIPS RS3000 (big-endian only)

EM_PARISC HP/PA

EM_SPARC32PLUS
SPARC with enhanced instruction set

EM_PPC PowerPC

EM_PPC64 PowerPC 64-bit

EM_S390 IBM S/390

EM_ARM Advanced RISC Machines

EM_SH Renesas SuperH

EM_SPARCV9 SPARC v9 64-bit

EM_IA_64 Intel Itanium

EM_X86_64 AMD x86-64

EM_VAX DEC Vax

e_version This member identifies the file version:

EV_NONE Invalid version

EV_CURRENT Current version

e_entry This member gives the virtual address to which the system first transfers control, thus starting

the process. If the file has no associated entry point, this member holds zero.

e_phoff This member holds the program header table’s file offset in bytes. If the file has no program

header table, this member holds zero.

Linux 2019-05-09 3



ELF(5) Linux Programmer’s Manual ELF(5)

e_shoff This member holds the section header table’s file offset in bytes. If the file has no section

header table, this member holds zero.

e_flags This member holds processor-specific flags associated with the file. Flag names take the form

EF_‘machine_flag’. Currently, no flags have been defined.

e_ehsize This member holds the ELF header’s size in bytes.

e_phentsize

This member holds the size in bytes of one entry in the file’s program header table; all entries

are the same size.

e_phnum This member holds the number of entries in the program header table. Thus the product of

e_phentsize and e_phnum gives the table’s size in bytes. If a file has no program header, e_ph-

num holds the value zero.

If the number of entries in the program header table is larger than or equal to PN_XNUM
(0xffff), this member holds PN_XNUM (0xffff) and the real number of entries in the program

header table is held in the sh_info member of the initial entry in section header table. Other-

wise, the sh_info member of the initial entry contains the value zero.

PN_XNUM
This is defined as 0xffff, the largest number e_phnum can have, specifying where

the actual number of program headers is assigned.

e_shentsize

This member holds a sections header’s size in bytes. A section header is one entry in the sec-

tion header table; all entries are the same size.

e_shnum This member holds the number of entries in the section header table. Thus the product of

e_shentsize and e_shnum gives the section header table’s size in bytes. If a file has no section

header table, e_shnum holds the value of zero.

If the number of entries in the section header table is larger than or equal to SHN_LORE-
SERVE (0xff00), e_shnum holds the value zero and the real number of entries in the section

header table is held in the sh_size member of the initial entry in section header table. Other-

wise, the sh_size member of the initial entry in the section header table holds the value zero.

e_shstrndx This member holds the section header table index of the entry associated with the section name

string table. If the file has no section name string table, this member holds the value

SHN_UNDEF.

If the index of section name string table section is larger than or equal to SHN_LORESERVE
(0xff00), this member holds SHN_XINDEX (0xffff) and the real index of the section name

string table section is held in the sh_link member of the initial entry in section header table.

Otherwise, the sh_link member of the initial entry in section header table contains the value

zero.

Program header (Phdr)
An executable or shared object file’s program header table is an array of structures, each describing a seg-

ment or other information the system needs to prepare the program for execution. An object file segment

contains one or more sections. Program headers are meaningful only for executable and shared object files.

A file specifies its own program header size with the ELF header’s e_phentsize and e_phnum members.

The ELF program header is described by the type Elf32_Phdr or Elf64_Phdr depending on the architec-

ture:

typedef struct {

uint32_t p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

uint32_t p_filesz;

Linux 2019-05-09 4



ELF(5) Linux Programmer’s Manual ELF(5)

uint32_t p_memsz;

uint32_t p_flags;

uint32_t p_align;

} Elf32_Phdr;

typedef struct {

uint32_t p_type;

uint32_t p_flags;

Elf64_Off p_offset;

Elf64_Addr p_vaddr;

Elf64_Addr p_paddr;

uint64_t p_filesz;

uint64_t p_memsz;

uint64_t p_align;

} Elf64_Phdr;

The main difference between the 32-bit and the 64-bit program header lies in the location of the p_flags

member in the total struct.

p_type This member of the structure indicates what kind of segment this array element describes or

how to interpret the array element’s information.

PT_NULL The array element is unused and the other members’ values are undefined. This

lets the program header have ignored entries.

PT_LOAD The array element specifies a loadable segment, described by p_filesz and

p_memsz. The bytes from the file are mapped to the beginning of the memory

segment. If the segment’s memory size p_memsz is larger than the file size

p_filesz, the "extra" bytes are defined to hold the value 0 and to follow the seg-

ment’s initialized area. The file size may not be larger than the memory size.

Loadable segment entries in the program header table appear in ascending or-

der, sorted on the p_vaddr member.

PT_DYNAMIC
The array element specifies dynamic linking information.

PT_INTERP
The array element specifies the location and size of a null-terminated pathname

to invoke as an interpreter. This segment type is meaningful only for executable

files (though it may occur for shared objects). However it may not occur more

than once in a file. If it is present, it must precede any loadable segment entry.

PT_NOTE The array element specifies the location of notes (ElfN_Nhdr).

PT_SHLIB This segment type is reserved but has unspecified semantics. Programs that

contain an array element of this type do not conform to the ABI.

PT_PHDR The array element, if present, specifies the location and size of the program

header table itself, both in the file and in the memory image of the program.

This segment type may not occur more than once in a file. Moreover, it may oc-

cur only if the program header table is part of the memory image of the pro-

gram. If it is present, it must precede any loadable segment entry.

PT_LOPROC, PT_HIPROC
Values in the inclusive range [PT_LOPROC, PT_HIPROC] are reserved for

processor-specific semantics.

PT_GNU_STACK
GNU extension which is used by the Linux kernel to control the state of the

stack via the flags set in the p_flags member.

Linux 2019-05-09 5



ELF(5) Linux Programmer’s Manual ELF(5)

p_offset This member holds the offset from the beginning of the file at which the first byte of the seg-

ment resides.

p_vaddr This member holds the virtual address at which the first byte of the segment resides in memory.

p_paddr On systems for which physical addressing is relevant, this member is reserved for the seg-

ment’s physical address. Under BSD this member is not used and must be zero.

p_filesz This member holds the number of bytes in the file image of the segment. It may be zero.

p_memsz This member holds the number of bytes in the memory image of the segment. It may be zero.

p_flags This member holds a bit mask of flags relevant to the segment:

PF_X An executable segment.

PF_W A writable segment.

PF_R A readable segment.

A text segment commonly has the flags PF_X and PF_R. A data segment commonly has

PF_W and PF_R.

p_align This member holds the value to which the segments are aligned in memory and in the file.

Loadable process segments must have congruent values for p_vaddr and p_offset, modulo the

page size. Values of zero and one mean no alignment is required. Otherwise, p_align should

be a positive, integral power of two, and p_vaddr should equal p_offset, modulo p_align.

Section header (Shdr)
A file’s section header table lets one locate all the file’s sections. The section header table is an array of

Elf32_Shdr or Elf64_Shdr structures. The ELF header’s e_shoff member gives the byte offset from the be-

ginning of the file to the section header table. e_shnum holds the number of entries the section header table

contains. e_shentsize holds the size in bytes of each entry.

A section header table index is a subscript into this array. Some section header table indices are reserved:

the initial entry and the indices between SHN_LORESERVE and SHN_HIRESERVE. The initial entry

is used in ELF extensions for e_phnum, e_shnum and e_shstrndx; in other cases, each field in the initial en-

try is set to zero. An object file does not have sections for these special indices:

SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise meaningless section reference.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indices.

SHN_LOPROC, SHN_HIPROC
Values greater in the inclusive range [SHN_LOPROC, SHN_HIPROC] are reserved for pro-

cessor-specific semantics.

SHN_ABS
This value specifies the absolute value for the corresponding reference. For example, a symbol de-

fined relative to section number SHN_ABS has an absolute value and is not affected by relocation.

SHN_COMMON
Symbols defined relative to this section are common symbols, such as FORTRAN COMMON or

unallocated C external variables.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indices. The system reserves indices

between SHN_LORESERVE and SHN_HIRESERVE, inclusive. The section header table does

not contain entries for the reserved indices.

The section header has the following structure:

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

Linux 2019-05-09 6



ELF(5) Linux Programmer’s Manual ELF(5)

uint32_t sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

uint32_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint32_t sh_addralign;

uint32_t sh_entsize;

} Elf32_Shdr;

typedef struct {

uint32_t sh_name;

uint32_t sh_type;

uint64_t sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

uint64_t sh_size;

uint32_t sh_link;

uint32_t sh_info;

uint64_t sh_addralign;

uint64_t sh_entsize;

} Elf64_Shdr;

No real differences exist between the 32-bit and 64-bit section headers.

sh_name This member specifies the name of the section. Its value is an index into the section header

string table section, giving the location of a null-terminated string.

sh_type This member categorizes the section’s contents and semantics.

SHT_NULL This value marks the section header as inactive. It does not have an associ-

ated section. Other members of the section header have undefined values.

SHT_PROGBITS
This section holds information defined by the program, whose format and

meaning are determined solely by the program.

SHT_SYMTAB This section holds a symbol table. Typically, SHT_SYMTAB provides

symbols for link editing, though it may also be used for dynamic linking.

As a complete symbol table, it may contain many symbols unnecessary for

dynamic linking. An object file can also contain a SHT_DYNSYM section.

SHT_STRTAB This section holds a string table. An object file may have multiple string ta-

ble sections.

SHT_RELA This section holds relocation entries with explicit addends, such as type

Elf32_Rela for the 32-bit class of object files. An object may have multiple

relocation sections.

SHT_HASH This section holds a symbol hash table. An object participating in dynamic

linking must contain a symbol hash table. An object file may have only one

hash table.

SHT_DYNAMIC
This section holds information for dynamic linking. An object file may

have only one dynamic section.

SHT_NOTE This section holds notes (ElfN_Nhdr).

SHT_NOBITS A section of this type occupies no space in the file but otherwise resembles

SHT_PROGBITS. Although this section contains no bytes, the sh_offset

member contains the conceptual file offset.

Linux 2019-05-09 7



ELF(5) Linux Programmer’s Manual ELF(5)

SHT_REL This section holds relocation offsets without explicit addends, such as type

Elf32_Rel for the 32-bit class of object files. An object file may have multi-

ple relocation sections.

SHT_SHLIB This section is reserved but has unspecified semantics.

SHT_DYNSYM This section holds a minimal set of dynamic linking symbols. An object file

can also contain a SHT_SYMTAB section.

SHT_LOPROC, SHT_HIPROC
Values in the inclusive range [SHT_LOPROC, SHT_HIPROC] are re-

served for processor-specific semantics.

SHT_LOUSER This value specifies the lower bound of the range of indices reserved for ap-

plication programs.

SHT_HIUSER This value specifies the upper bound of the range of indices reserved for ap-

plication programs. Section types between SHT_LOUSER and

SHT_HIUSER may be used by the application, without conflicting with

current or future system-defined section types.

sh_flags Sections support one-bit flags that describe miscellaneous attributes. If a flag bit is set in

sh_flags, the attribute is "on" for the section. Otherwise, the attribute is "off" or does not apply.

Undefined attributes are set to zero.

SHF_WRITE This section contains data that should be writable during process execution.

SHF_ALLOC This section occupies memory during process execution. Some control sec-

tions do not reside in the memory image of an object file. This attribute is

off for those sections.

SHF_EXECINSTR
This section contains executable machine instructions.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific semantics.

sh_addr If this section appears in the memory image of a process, this member holds the address at

which the section’s first byte should reside. Otherwise, the member contains zero.

sh_offset This member’s value holds the byte offset from the beginning of the file to the first byte in the

section. One section type, SHT_NOBITS, occupies no space in the file, and its sh_offset

member locates the conceptual placement in the file.

sh_size This member holds the section’s size in bytes. Unless the section type is SHT_NOBITS, the

section occupies sh_size bytes in the file. A section of type SHT_NOBITS may have a non-

zero size, but it occupies no space in the file.

sh_link This member holds a section header table index link, whose interpretation depends on the sec-

tion type.

sh_info This member holds extra information, whose interpretation depends on the section type.

sh_addralign

Some sections have address alignment constraints. If a section holds a doubleword, the system

must ensure doubleword alignment for the entire section. That is, the value of sh_addr must be

congruent to zero, modulo the value of sh_addralign. Only zero and positive integral powers

of two are allowed. The value 0 or 1 means that the section has no alignment constraints.

sh_entsize Some sections hold a table of fixed-sized entries, such as a symbol table. For such a section,

this member gives the size in bytes for each entry. This member contains zero if the section

does not hold a table of fixed-size entries.

Various sections hold program and control information:

Linux 2019-05-09 8



ELF(5) Linux Programmer’s Manual ELF(5)

.bss This section holds uninitialized data that contributes to the program’s memory image. By defi-

nition, the system initializes the data with zeros when the program begins to run. This section

is of type SHT_NOBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.comment This section holds version control information. This section is of type SHT_PROGBITS. No

attribute types are used.

.ctors This section holds initialized pointers to the C++ constructor functions. This section is of type

SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data This section holds initialized data that contribute to the program’s memory image. This section

is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.data1 This section holds initialized data that contribute to the program’s memory image. This section

is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.debug This section holds information for symbolic debugging. The contents are unspecified. This

section is of type SHT_PROGBITS. No attribute types are used.

.dtors This section holds initialized pointers to the C++ destructor functions. This section is of type

SHT_PROGBITS. The attribute types are SHF_ALLOC and SHF_WRITE.

.dynamic This section holds dynamic linking information. The section’s attributes will include the

SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor-specific. This section is

of type SHT_DYNAMIC. See the attributes above.

.dynstr This section holds strings needed for dynamic linking, most commonly the strings that repre-

sent the names associated with symbol table entries. This section is of type SHT_STRTAB.

The attribute type used is SHF_ALLOC.

.dynsym This section holds the dynamic linking symbol table. This section is of type SHT_DYNSYM.

The attribute used is SHF_ALLOC.

.fini This section holds executable instructions that contribute to the process termination code.

When a program exits normally the system arranges to execute the code in this section. This

section is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EX-
ECINSTR.

.gnu.version

This section holds the version symbol table, an array of ElfN_Half elements. This section is of

type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

.gnu.version_d

This section holds the version symbol definitions, a table of ElfN_Verdef structures. This sec-

tion is of type SHT_GNU_verdef. The attribute type used is SHF_ALLOC.

.gnu.version_r

This section holds the version symbol needed elements, a table of ElfN_Verneed structures.

This section is of type SHT_GNU_versym. The attribute type used is SHF_ALLOC.

.got This section holds the global offset table. This section is of type SHT_PROGBITS. The at-

tributes are processor-specific.

.hash This section holds a symbol hash table. This section is of type SHT_HASH. The attribute

used is SHF_ALLOC.

.init This section holds executable instructions that contribute to the process initialization code.

When a program starts to run the system arranges to execute the code in this section before

calling the main program entry point. This section is of type SHT_PROGBITS. The at-

tributes used are SHF_ALLOC and SHF_EXECINSTR.

.interp This section holds the pathname of a program interpreter. If the file has a loadable segment

that includes the section, the section’s attributes will include the SHF_ALLOC bit. Other-

wise, that bit will be off. This section is of type SHT_PROGBITS.

Linux 2019-05-09 9



ELF(5) Linux Programmer’s Manual ELF(5)

.line This section holds line number information for symbolic debugging, which describes the corre-

spondence between the program source and the machine code. The contents are unspecified.

This section is of type SHT_PROGBITS. No attribute types are used.

.note This section holds various notes. This section is of type SHT_NOTE. No attribute types are

used.

.note.ABI-tag

This section is used to declare the expected run-time ABI of the ELF image. It may include

the operating system name and its run-time versions. This section is of type SHT_NOTE.

The only attribute used is SHF_ALLOC.

.note.gnu.build-id

This section is used to hold an ID that uniquely identifies the contents of the ELF image. Dif-

ferent files with the same build ID should contain the same executable content. See the

−−build−id option to the GNU linker (ld (1)) for more details. This section is of type

SHT_NOTE. The only attribute used is SHF_ALLOC.

.note.GNU-stack

This section is used in Linux object files for declaring stack attributes. This section is of type

SHT_PROGBITS. The only attribute used is SHF_EXECINSTR. This indicates to the

GNU linker that the object file requires an executable stack.

.note.openbsd.ident

OpenBSD native executables usually contain this section to identify themselves so the kernel

can bypass any compatibility ELF binary emulation tests when loading the file.

.plt This section holds the procedure linkage table. This section is of type SHT_PROGBITS. The

attributes are processor-specific.

.relNAME This section holds relocation information as described below. If the file has a loadable segment

that includes relocation, the section’s attributes will include the SHF_ALLOC bit. Otherwise,

the bit will be off. By convention, "NAME" is supplied by the section to which the relocations

apply. Thus a relocation section for .text normally would have the name .rel.text. This section

is of type SHT_REL.

.relaNAME

This section holds relocation information as described below. If the file has a loadable segment

that includes relocation, the section’s attributes will include the SHF_ALLOC bit. Otherwise,

the bit will be off. By convention, "NAME" is supplied by the section to which the relocations

apply. Thus a relocation section for .text normally would have the name .rela.text. This sec-

tion is of type SHT_RELA.

.rodata This section holds read-only data that typically contributes to a nonwritable segment in the

process image. This section is of type SHT_PROGBITS. The attribute used is SHF_AL-
LOC.

.rodata1 This section holds read-only data that typically contributes to a nonwritable segment in the

process image. This section is of type SHT_PROGBITS. The attribute used is SHF_AL-
LOC.

.shstrtab This section holds section names. This section is of type SHT_STRTAB. No attribute types

are used.

.strtab This section holds strings, most commonly the strings that represent the names associated with

symbol table entries. If the file has a loadable segment that includes the symbol string table,

the section’s attributes will include the SHF_ALLOC bit. Otherwise, the bit will be off. This

section is of type SHT_STRTAB.

.symtab This section holds a symbol table. If the file has a loadable segment that includes the symbol

table, the section’s attributes will include the SHF_ALLOC bit. Otherwise, the bit will be off.

This section is of type SHT_SYMTAB.

Linux 2019-05-09 10



ELF(5) Linux Programmer’s Manual ELF(5)

.text This section holds the "text", or executable instructions, of a program. This section is of type

SHT_PROGBITS. The attributes used are SHF_ALLOC and SHF_EXECINSTR.

String and symbol tables
String table sections hold null-terminated character sequences, commonly called strings. The object file

uses these strings to represent symbol and section names. One references a string as an index into the string

table section. The first byte, which is index zero, is defined to hold a null byte ('\0'). Similarly, a string ta-

ble’s last byte is defined to hold a null byte, ensuring null termination for all strings.

An object file’s symbol table holds information needed to locate and relocate a program’s symbolic defini-

tions and references. A symbol table index is a subscript into this array.

typedef struct {

uint32_t st_name;

Elf32_Addr st_value;

uint32_t st_size;

unsigned char st_info;

unsigned char st_other;

uint16_t st_shndx;

} Elf32_Sym;

typedef struct {

uint32_t st_name;

unsigned char st_info;

unsigned char st_other;

uint16_t st_shndx;

Elf64_Addr st_value;

uint64_t st_size;

} Elf64_Sym;

The 32-bit and 64-bit versions have the same members, just in a different order.

st_name This member holds an index into the object file’s symbol string table, which holds character

representations of the symbol names. If the value is nonzero, it represents a string table index

that gives the symbol name. Otherwise, the symbol has no name.

st_value This member gives the value of the associated symbol.

st_size Many symbols have associated sizes. This member holds zero if the symbol has no size or an

unknown size.

st_info This member specifies the symbol’s type and binding attributes:

STT_NOTYPE
The symbol’s type is not defined.

STT_OBJECT
The symbol is associated with a data object.

STT_FUNC The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this type exist

primarily for relocation and normally have STB_LOCAL bindings.

STT_FILE By convention, the symbol’s name gives the name of the source file associated

with the object file. A file symbol has STB_LOCAL bindings, its section index

is SHN_ABS, and it precedes the other STB_LOCAL symbols of the file, if it

is present.

STT_LOPROC, STT_HIPROC
Values in the inclusive range [STT_LOPROC, STT_HIPROC] are reserved

for processor-specific semantics.

Linux 2019-05-09 11



ELF(5) Linux Programmer’s Manual ELF(5)

STB_LOCAL
Local symbols are not visible outside the object file containing their definition.

Local symbols of the same name may exist in multiple files without interfering

with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s defini-

tion of a global symbol will satisfy another file’s undefined reference to the

same symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower prece-

dence.

STB_LOPROC, STB_HIPROC
Values in the inclusive range [STB_LOPROC, STB_HIPROC] are reserved

for processor-specific semantics.

There are macros for packing and unpacking the binding and type fields:

ELF32_ST_BIND(info), ELF64_ST_BIND(info)
Extract a binding from an st_info value.

ELF32_ST_TYPE(info), ELF64_ST_TYPE(info)
Extract a type from an st_info value.

ELF32_ST_INFO(bind, type), ELF64_ST_INFO(bind, type)
Convert a binding and a type into an st_info value.

st_other This member defines the symbol visibility.

STV_DEFAULT Default symbol visibility rules. Global and weak symbols are available to

other modules; references in the local module can be interposed by defini-

tions in other modules.

STV_INTERNAL
Processor-specific hidden class.

STV_HIDDEN Symbol is unavailable to other modules; references in the local module al-

ways resolve to the local symbol (i.e., the symbol can’t be interposed by

definitions in other modules).

STV_PROTECTED
Symbol is available to other modules, but references in the local module al-

ways resolve to the local symbol.

There are macros for extracting the visibility type:

ELF32_ST_VISIBILITY(other) or ELF64_ST_VISIBILITY(other)

st_shndx Every symbol table entry is "defined" in relation to some section. This member holds the rele-

vant section header table index.

Relocation entries (Rel & Rela)
Relocation is the process of connecting symbolic references with symbolic definitions. Relocatable files

must have information that describes how to modify their section contents, thus allowing executable and

shared object files to hold the right information for a process’s program image. Relocation entries are these

data.

Relocation structures that do not need an addend:

typedef struct {

Elf32_Addr r_offset;

uint32_t r_info;

} Elf32_Rel;

typedef struct {

Linux 2019-05-09 12



ELF(5) Linux Programmer’s Manual ELF(5)

Elf64_Addr r_offset;

uint64_t r_info;

} Elf64_Rel;

Relocation structures that need an addend:

typedef struct {

Elf32_Addr r_offset;

uint32_t r_info;

int32_t r_addend;

} Elf32_Rela;

typedef struct {

Elf64_Addr r_offset;

uint64_t r_info;

int64_t r_addend;

} Elf64_Rela;

r_offset This member gives the location at which to apply the relocation action. For a relocatable file,

the value is the byte offset from the beginning of the section to the storage unit affected by the

relocation. For an executable file or shared object, the value is the virtual address of the stor-

age unit affected by the relocation.

r_info This member gives both the symbol table index with respect to which the relocation must be

made and the type of relocation to apply. Relocation types are processor-specific. When the

text refers to a relocation entry’s relocation type or symbol table index, it means the result of

applying ELF[32|64]_R_TYPE or ELF[32|64]_R_SYM, respectively, to the entry’s r_info

member.

r_addend This member specifies a constant addend used to compute the value to be stored into the relo-

catable field.

Dynamic tags (Dyn)
The .dynamic section contains a series of structures that hold relevant dynamic linking information. The

d_tag member controls the interpretation of d_un.

typedef struct {

Elf32_Sword d_tag;

union {

Elf32_Word d_val;

Elf32_Addr d_ptr;

} d_un;

} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];

typedef struct {

Elf64_Sxword d_tag;

union {

Elf64_Xword d_val;

Elf64_Addr d_ptr;

} d_un;

} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

d_tag This member may have any of the following values:

DT_NULL Marks end of dynamic section

DT_NEEDED
String table offset to name of a needed library

Linux 2019-05-09 13



ELF(5) Linux Programmer’s Manual ELF(5)

DT_PLTRELSZ
Size in bytes of PLT relocation entries

DT_PLTGOT
Address of PLT and/or GOT

DT_HASH Address of symbol hash table

DT_STRTAB
Address of string table

DT_SYMTAB
Address of symbol table

DT_RELA Address of Rela relocation table

DT_RELASZ
Size in bytes of the Rela relocation table

DT_RELAENT
Size in bytes of a Rela relocation table entry

DT_STRSZ Size in bytes of string table

DT_SYMENT
Size in bytes of a symbol table entry

DT_INIT Address of the initialization function

DT_FINI Address of the termination function

DT_SONAME
String table offset to name of shared object

DT_RPATH String table offset to library search path (deprecated)

DT_SYMBOLIC
Alert linker to search this shared object before the executable for symbols

DT_REL Address of Rel relocation table

DT_RELSZ Size in bytes of Rel relocation table

DT_RELENT
Size in bytes of a Rel table entry

DT_PLTREL
Type of relocation entry to which the PLT refers (Rela or Rel)

DT_DEBUG Undefined use for debugging

DT_TEXTREL
Absence of this entry indicates that no relocation entries should apply to a non-

writable segment

DT_JMPREL
Address of relocation entries associated solely with the PLT

DT_BIND_NOW
Instruct dynamic linker to process all relocations before transferring control to

the executable

DT_RUNPATH
String table offset to library search path

DT_LOPROC, DT_HIPROC
Values in the inclusive range [DT_LOPROC, DT_HIPROC] are reserved for

processor-specific semantics

Linux 2019-05-09 14



ELF(5) Linux Programmer’s Manual ELF(5)

d_val This member represents integer values with various interpretations.

d_ptr This member represents program virtual addresses. When interpreting these addresses, the ac-

tual address should be computed based on the original file value and memory base address.

Files do not contain relocation entries to fixup these addresses.

_DYNAMIC

Array containing all the dynamic structures in the .dynamic section. This is automatically pop-

ulated by the linker.

Notes (Nhdr)
ELF notes allow for appending arbitrary information for the system to use. They are largely used by core

files (e_type of ET_CORE), but many projects define their own set of extensions. For example, the GNU

tool chain uses ELF notes to pass information from the linker to the C library.

Note sections contain a series of notes (see the struct definitions below). Each note is followed by the

name field (whose length is defined in n_namesz) and then by the descriptor field (whose length is defined

in n_descsz) and whose starting address has a 4 byte alignment. Neither field is defined in the note struct

due to their arbitrary lengths.

An example for parsing out two consecutive notes should clarify their layout in memory:

void *memory, *name, *desc;

Elf64_Nhdr *note, *next_note;

/* The buffer is pointing to the start of the section/segment */

note = memory;

/* If the name is defined, it follows the note */

name = note->n_namesz == 0 ? NULL : memory + sizeof(*note);

/* If the descriptor is defined, it follows the name

(with alignment) */

desc = note->n_descsz == 0 ? NULL :

memory + sizeof(*note) + ALIGN_UP(note->n_namesz, 4);

/* The next note follows both (with alignment) */

next_note = memory + sizeof(*note) +

ALIGN_UP(note->n_namesz, 4) +

ALIGN_UP(note->n_descsz, 4);

Keep in mind that the interpretation of n_type depends on the namespace defined by the n_namesz field. If

the n_namesz field is not set (e.g., is 0), then there are two sets of notes: one for core files and one for all

other ELF types. If the namespace is unknown, then tools will usually fallback to these sets of notes as

well.

typedef struct {

Elf32_Word n_namesz;

Elf32_Word n_descsz;

Elf32_Word n_type;

} Elf32_Nhdr;

typedef struct {

Elf64_Word n_namesz;

Elf64_Word n_descsz;

Elf64_Word n_type;

} Elf64_Nhdr;

Linux 2019-05-09 15



ELF(5) Linux Programmer’s Manual ELF(5)

n_namesz The length of the name field in bytes. The contents will immediately follow this note in mem-

ory. The name is null terminated. For example, if the name is "GNU", then n_namesz will be

set to 4.

n_descsz The length of the descriptor field in bytes. The contents will immediately follow the name

field in memory.

n_type Depending on the value of the name field, this member may have any of the following values:

Core files (e_type = ET_CORE)
Notes used by all core files. These are highly operating system or architecture specific

and often require close coordination with kernels, C libraries, and debuggers. These are

used when the namespace is the default (i.e., n_namesz will be set to 0), or a fallback

when the namespace is unknown.

NT_PRSTATUS prstatus struct

NT_FPREGSET fpregset struct

NT_PRPSINFO prpsinfo struct

NT_PRXREG prxregset struct

NT_TASKSTRUCT task structure

NT_PLATFORM String from sysinfo(SI_PLATFORM)

NT_AUXV auxv array

NT_GWINDOWS gwindows struct

NT_ASRS asrset struct

NT_PSTATUS pstatus struct

NT_PSINFO psinfo struct

NT_PRCRED prcred struct

NT_UTSNAME utsname struct

NT_LWPSTATUS lwpstatus struct

NT_LWPSINFO lwpinfo struct

NT_PRFPXREG fprxregset struct

NT_SIGINFO siginfo_t (size might increase over time)

NT_FILE Contains information about mapped files

NT_PRXFPREG user_fxsr_struct

NT_PPC_VMX PowerPC Altivec/VMX registers

NT_PPC_SPE PowerPC SPE/EVR registers

NT_PPC_VSX PowerPC VSX registers

NT_386_TLS i386 TLS slots (struct user_desc)

NT_386_IOPERM x86 io permission bitmap (1=deny)

NT_X86_XSTATE x86 extended state using xsave

NT_S390_HIGH_GPRS
s390 upper register halves

NT_S390_TIMER s390 timer register

NT_S390_TODCMP s390 time-of-day (TOD) clock comparator register

NT_S390_TODPREG s390 time-of-day (TOD) programmable register

NT_S390_CTRS s390 control registers

NT_S390_PREFIX s390 prefix register

NT_S390_LAST_BREAK
s390 breaking event address

NT_S390_SYSTEM_CALL
s390 system call restart data

NT_S390_TDB s390 transaction diagnostic block

NT_ARM_VFP ARM VFP/NEON registers

NT_ARM_TLS ARM TLS register

NT_ARM_HW_BREAK
ARM hardware breakpoint registers

Linux 2019-05-09 16



ELF(5) Linux Programmer’s Manual ELF(5)

NT_ARM_HW_WATCH
ARM hardware watchpoint registers

NT_ARM_SYSTEM_CALL
ARM system call number

n_name = GNU
Extensions used by the GNU tool chain.

NT_GNU_ABI_TAG
Operating system (OS) ABI information. The desc field will be 4 words:

• word 0: OS descriptor (ELF_NOTE_OS_LINUX, ELF_NOTE_OS_GNU,

and so on)‘

• word 1: major version of the ABI

• word 2: minor version of the ABI

• word 3: subminor version of the ABI

NT_GNU_HWCAP
Synthetic hwcap information. The desc field begins with two words:

• word 0: number of entries

• word 1: bit mask of enabled entries

Then follow variable-length entries, one byte followed by a null-terminated hw-

cap name string. The byte gives the bit number to test if enabled, (1U << bit) &

bit mask.

NT_GNU_BUILD_ID
Unique build ID as generated by the GNU ld(1) −−build−id option. The desc

consists of any nonzero number of bytes.

NT_GNU_GOLD_VERSION
The desc contains the GNU Gold linker version used.

Default/unknown namespace (e_type != ET_CORE)
These are used when the namespace is the default (i.e., n_namesz will be set to 0), or a

fallback when the namespace is unknown.

NT_VERSION A version string of some sort.

NT_ARCH Architecture information.

NOTES
ELF first appeared in System V. The ELF format is an adopted standard.

The extensions for e_phnum, e_shnum and e_shstrndx respectively are Linux extensions. Sun, BSD and

AMD64 also support them; for further information, look under SEE ALSO.

SEE ALSO
as(1), elfedit(1), gdb(1), ld(1), nm(1), objdump(1), patchelf(1), readelf(1), size(1), strings(1), strip(1),

execve(2), dl_iterate_phdr(3), core(5), ld.so(8)

Hewlett-Packard, Elf-64 Object File Format.

Santa Cruz Operation, System V Application Binary Interface.

UNIX System Laboratories, "Object Files", Executable and Linking Format (ELF).

Sun Microsystems, Linker and Libraries Guide.

AMD64 ABI Draft, System V Application Binary Interface AMD64 Architecture Processor Supplement.

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-05-09 17


