
DUP(2) Linux Programmer’s Manual DUP(2)

NAME
dup, dup2, dup3 − duplicate a file descriptor

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);

int dup2(int oldfd , int newfd);

#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <fcntl.h> /* Obtain O_* constant definitions */

#include <unistd.h>

int dup3(int oldfd , int newfd , int flags);

DESCRIPTION
The dup() system call creates a copy of the file descriptor oldfd , using the lowest-numbered unused file de-

scriptor for the new descriptor.

After a successful return, the old and new file descriptors may be used interchangeably. They refer to the

same open file description (see open(2)) and thus share file offset and file status flags; for example, if the

file offset is modified by using lseek(2) on one of the file descriptors, the offset is also changed for the

other.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The close-on-exec flag

(FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()

The dup2() system call performs the same task as dup(), but instead of using the lowest-numbered unused

file descriptor, it uses the file descriptor number specified in newfd . If the file descriptor newfd was previ-

ously open, it is silently closed before being reused.

The steps of closing and reusing the file descriptor newfd are performed atomically. This is important, be-

cause trying to implement equivalent functionality using close(2) and dup() would be subject to race condi-

tions, whereby newfd might be reused between the two steps. Such reuse could happen because the main

program is interrupted by a signal handler that allocates a file descriptor, or because a parallel thread allo-

cates a file descriptor.

Note the following points:

* If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

* If oldfd is a valid file descriptor, and newfd has the same value as oldfd , then dup2() does nothing, and

returns newfd .

dup3()

dup3() is the same as dup2(), except that:

* The caller can force the close-on-exec flag to be set for the new file descriptor by specifying

O_CLOEXEC in flags. See the description of the same flag in open(2) for reasons why this may be

useful.

* If oldfd equals newfd , then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, −1 is returned, and errno is set ap-

propriately.

ERRORS
EBADF

oldfd isn’t an open file descriptor.

EBADF

newfd is out of the allowed range for file descriptors (see the discussion of RLIMIT_NOFILE in

getrlimit(2)).

Linux 2017-09-15 1



DUP(2) Linux Programmer’s Manual DUP(2)

EBUSY

(Linux only) This may be returned by dup2() or dup3() during a race condition with open(2) and

dup().

EINTR

The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL

(dup3()) flags contain an invalid value.

EINVAL

(dup3()) oldfd was equal to newfd .

EMFILE

The per-process limit on the number of open file descriptors has been reached (see the discussion

of RLIMIT_NOFILE in getrlimit(2)).

VERSIONS
dup3() was added to Linux in version 2.6.27; glibc support is available starting with version 2.9.

CONFORMING TO
dup(), dup2(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

dup3() is Linux-specific.

NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...) when newfd is out

of range. On some systems, dup2() also sometimes returns EINVAL like F_DUPFD.

If newfd was open, any errors that would have been reported at close(2) time are lost. If this is of concern,

then—unless the program is single-threaded and does not allocate file descriptors in signal handlers—the

correct approach is not to close newfd before calling dup2(), because of the race condition described

above. Instead, code something like the following could be used:

/* Obtain a duplicate of ’newfd’ that can subsequently

be used to check for close() errors; an EBADF error

means that ’newfd’ was not open. */

tmpfd = dup(newfd);

if (tmpfd == −1 && errno != EBADF) {

/* Handle unexpected dup() error */

}

/* Atomically duplicate ’oldfd’ on ’newfd’ */

if (dup2(oldfd, newfd) == −1) {

/* Handle dup2() error */

}

/* Now check for close() errors on the file originally

referred to by ’newfd’ */

if (tmpfd != −1) {

if (close(tmpfd) == −1) {

/* Handle errors from close */

}

}

SEE ALSO
close(2), fcntl(2), open(2)

Linux 2017-09-15 2



DUP(2) Linux Programmer’s Manual DUP(2)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 3


