
DOCKER(1) Docker User Manuals DOCKER(1)

NAME
docker-container-cp - Copy files/folders between a container and the local filesystem

SYNOPSIS
docker container cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|- docker cp [OP-
TIONS] SRC_PATH|- CONTAINER:DEST_PATH

DESCRIPTION
The docker container cp utility copies the contents of SRC_PATH to the DEST_PATH. You can
copy from the container’s file system to the local machine or the reverse, from the local filesystem to the
container. If - is specified for either the SRC_PATH or DEST_PATH, you can also stream a tar archive
from STDIN or to STDOUT. The CONTAINER can be a running or stopped container. The SRC_PATH or
DEST_PATH can be a file or directory.

The docker container cp command assumes container paths are relative to the container’s / (root)
directory. This means supplying the initial forward slash is optional; The command sees compassion-
ate_darwin:/tmp/foo/myfile.txt and compassionate_darwin:tmp/foo/my-

file.txt as identical. Local machine paths can be an absolute or relative value. The command interprets
a local machine’s relative paths as relative to the current working directory where docker container
cp is run.

The cp command behaves like the Unix cp -a command in that directories are copied recursively with
permissions preserved if possible. Ownership is set to the user and primary group at the destination. For ex-
ample, files copied to a container are created with UID:GID of the root user. Files copied to the local ma-
chine are created with the UID:GID of the user which invoked the docker container cp command.
If you specify the -L option, docker container cp follows any symbolic link in the SRC_PATH.
docker container cp does not create parent directories for DEST_PATH if they do not exist.

Assuming a path separator of /, a first argument of SRC_PATH and second argument of DEST_PATH, the
behavior is as follows:

• SRC_PATH specifies a file

• DEST_PATH does not exist

• the file is saved to a file created at DEST_PATH

• DEST_PATH does not exist and ends with /

• Error condition: the destination directory must exist.

• DEST_PATH exists and is a file

• the destination is overwritten with the source file’s contents

• DEST_PATH exists and is a directory

• the file is copied into this directory using the basename from SRC_PATH

Docker Community Feb 2022 1

DOCKER(1) Docker User Manuals DOCKER(1)

• SRC_PATH specifies a directory

• DEST_PATH does not exist

• DEST_PATH is created as a directory and the contents of the source directory are copied
into this directory

• DEST_PATH exists and is a file

• Error condition: cannot copy a directory to a file

• DEST_PATH exists and is a directory

• SRC_PATH does not end with /. (that is: slash followed by dot)

• the source directory is copied into this directory

• SRC_PATH does end with /. (that is: slash followed by dot)

• the content of the source directory is copied into this directory

The command requires SRC_PATH and DEST_PATH to exist according to the above rules. If SRC_PATH
is local and is a symbolic link, the symbolic link, not the target, is copied by default. To copy the link target
and not the link, specify the -L option.

A colon (:) is used as a delimiter between CONTAINER and its path. You can also use : when specifying
paths to a SRC_PATH or DEST_PATH on a local machine, for example file:name.txt. If you use a :
in a local machine path, you must be explicit with a relative or absolute path, for example:

‘/path/to/file:name.txt‘ or ‘./file:name.txt‘

It is not possible to copy certain system files such as resources under /proc, /sys, /dev, tmpfs, and
mounts created by the user in the container. Howev er, you can still copy such files by manually running
tar in docker exec. For example (consider SRC_PATH and DEST_PATH are directories):

$ docker exec foo tar Ccf $(dirname SRC_PATH) - $(basename SRC_PATH) | tar Cxf DEST_PATH -

or

$ tar Ccf $(dirname SRC_PATH) - $(basename SRC_PATH) | docker exec -i foo tar Cxf DEST_PATH -

Docker Community Feb 2022 2

DOCKER(1) Docker User Manuals DOCKER(1)

Using - as the SRC_PATH streams the contents of STDIN as a tar archive. The command extracts the con-
tent of the tar to the DEST_PATH in container’s filesystem. In this case, DEST_PATH must specify a direc-
tory. Using - as the DEST_PATH streams the contents of the resource as a tar archive to STDOUT.

EXAMPLES
Suppose a container has finished producing some output as a file it saves to somewhere in its filesystem.
This could be the output of a build job or some other computation. You can copy these outputs from the
container to a location on your local host.

If you want to copy the /tmp/foo directory from a container to the existing /tmp directory on your host.
If you run docker container cp in your ˜ (home) directory on the local host:

$ docker container cp compassionate_darwin:tmp/foo /tmp

Docker creates a /tmp/foo directory on your host. Alternatively, you can omit the leading slash in the
command. If you execute this command from your home directory:

$ docker container cp compassionate_darwin:tmp/foo tmp

If ˜/tmp does not exist, Docker will create it and copy the contents of /tmp/foo from the container into
this new directory. If ˜/tmp already exists as a directory, then Docker will copy the contents of
/tmp/foo from the container into a directory at ˜/tmp/foo.

When copying a single file to an existing LOCALPATH, the docker container cp command will ei-
ther overwrite the contents of LOCALPATH if it is a file or place it into LOCALPATH if it is a directory,
overwriting an existing file of the same name if one exists. For example, this command:

$ docker container cp sharp_ptolemy:/tmp/foo/myfile.txt /test

If /test does not exist on the local machine, it will be created as a file with the contents of
/tmp/foo/myfile.txt from the container. If /test exists as a file, it will be overwritten. Lastly, if
/test exists as a directory, the file will be copied to /test/myfile.txt.

Next, suppose you want to copy a file or folder into a container. For example, this could be a configuration
file or some other input to a long running computation that you would like to place into a created container
before it starts. This is useful because it does not require the configuration file or other input to exist in the
container image.

If you have a file, config.yml, in the current directory on your local host and wish to copy it to an exist-
ing directory at /etc/my-app.d in a container, this command can be used:

$ docker container cp config.yml myappcontainer:/etc/my-app.d

If you have sev eral files in a local directory /config which you need to copy to a directory /etc/my-

Docker Community Feb 2022 3

DOCKER(1) Docker User Manuals DOCKER(1)

app.d in a container:

$ docker container cp /config/. myappcontainer:/etc/my-app.d

The above command will copy the contents of the local /config directory into the directory /etc/my-
app.d in the container.

Finally, if you want to copy a symbolic link into a container, you typically want to copy the linked target
and not the link itself. To copy the target, use the -L option, for example:

$ ln -s /tmp/somefile /tmp/somefile.ln
$ docker container cp -L /tmp/somefile.ln myappcontainer:/tmp/

This command copies content of the local /tmp/somefile into the file /tmp/somefile.ln in the
container. Without -L option, the /tmp/somefile.ln preserves its symbolic link but not its content.

OPTIONS
-a, --archive[=false] Archive mode (copy all uid/gid information)

-L, --follow-link[=false] Always follow symbol link in SRC_PATH

-h, --help[=false] help for cp

SEE ALSO
docker-container(1)

Docker Community Feb 2022 4

