
DL_ITERATE_PHDR(3) Linux Programmer’s Manual DL_ITERATE_PHDR(3)

NAME
dl_iterate_phdr − walk through list of shared objects

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */

#include <link.h>

int dl_iterate_phdr(

int (*callback) (struct dl_phdr_info *info,

size_t size, void *data),

void *data);

DESCRIPTION
The dl_iterate_phdr() function allows an application to inquire at run time to find out which shared objects

it has loaded, and the order in which they were loaded.

The dl_iterate_phdr() function walks through the list of an application’s shared objects and calls the func-

tion callback once for each object, until either all shared objects have been processed or callback returns a

nonzero value.

Each call to callback receives three arguments: info, which is a pointer to a structure containing informa-

tion about the shared object; size, which is the size of the structure pointed to by info; and data, which is a

copy of whatever value was passed by the calling program as the second argument (also named data) in the

call to dl_iterate_phdr().

The info argument is a structure of the following type:

struct dl_phdr_info {

ElfW(Addr) dlpi_addr; /* Base address of object */

const char *dlpi_name; /* (Null-terminated) name of

object */

const ElfW(Phdr) *dlpi_phdr; /* Pointer to array of

ELF program headers

for this object */

ElfW(Half) dlpi_phnum; /* # of items in dlpi_phdr */

/* The following fields were added in glibc 2.4, after the first

version of this structure was available. Check the size

argument passed to the dl_iterate_phdr callback to determine

whether or not each later member is available. */

unsigned long long int dlpi_adds;

/* Incremented when a new object may

have been added */

unsigned long long int dlpi_subs;

/* Incremented when an object may

have been removed */

size_t dlpi_tls_modid;

/* If there is a PT_TLS segment, its module

ID as used in TLS relocations, else zero */

void *dlpi_tls_data;

/* The address of the calling thread’s instance

of this module’s PT_TLS segment, if it has

one and it has been allocated in the calling

thread, otherwise a null pointer */

};

(The ElfW () macro definition turns its argument into the name of an ELF data type suitable for the hard-

ware architecture. For example, on a 32-bit platform, ElfW(Addr) yields the data type name Elf32_Addr.

GNU 2019-03-06 1



DL_ITERATE_PHDR(3) Linux Programmer’s Manual DL_ITERATE_PHDR(3)

Further information on these types can be found in the <elf.h> and <link.h> header files.)

The dlpi_addr field indicates the base address of the shared object (i.e., the difference between the virtual

memory address of the shared object and the offset of that object in the file from which it was loaded). The

dlpi_name field is a null-terminated string giving the pathname from which the shared object was loaded.

To understand the meaning of the dlpi_phdr and dlpi_phnum fields, we need to be aware that an ELF

shared object consists of a number of segments, each of which has a corresponding program header de-

scribing the segment. The dlpi_phdr field is a pointer to an array of the program headers for this shared ob-

ject. The dlpi_phnum field indicates the size of this array.

These program headers are structures of the following form:

typedef struct {

Elf32_Word p_type; /* Segment type */

Elf32_Off p_offset; /* Segment file offset */

Elf32_Addr p_vaddr; /* Segment virtual address */

Elf32_Addr p_paddr; /* Segment physical address */

Elf32_Word p_filesz; /* Segment size in file */

Elf32_Word p_memsz; /* Segment size in memory */

Elf32_Word p_flags; /* Segment flags */

Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Note that we can calculate the location of a particular program header, x, in virtual memory using the for-

mula:

addr == info−>dlpi_addr + info−>dlpi_phdr[x].p_vaddr;

Possible values for p_type include the following (see <elf.h> for further details):

#define PT_LOAD 1 /* Loadable program segment */

#define PT_DYNAMIC 2 /* Dynamic linking information */

#define PT_INTERP 3 /* Program interpreter */

#define PT_NOTE 4 /* Auxiliary information */

#define PT_SHLIB 5 /* Reserved */

#define PT_PHDR 6 /* Entry for header table itself */

#define PT_TLS 7 /* Thread-local storage segment */

#define PT_GNU_EH_FRAME 0x6474e550 /* GCC .eh_frame_hdr segment */

#define PT_GNU_STACK 0x6474e551 /* Indicates stack executability */

#define PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */

RETURN VALUE
The dl_iterate_phdr() function returns whatever value was returned by the last call to callback.

VERSIONS
dl_iterate_phdr() has been supported in glibc since version 2.2.4.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Safedl_iterate_phdr()

CONFORMING TO
The dl_iterate_phdr() function is not specified in any standard. Various other systems provide a version of

this function, although details of the returned dl_phdr_info structure differ. On the BSDs and Solaris, the

structure includes the fields dlpi_addr, dlpi_name, dlpi_phdr, and dlpi_phnum in addition to other imple-

mentation-specific fields.

GNU 2019-03-06 2



DL_ITERATE_PHDR(3) Linux Programmer’s Manual DL_ITERATE_PHDR(3)

NOTES
Future versions of the C library may add further fields to the dl_phdr_info structure; in that event, the size

argument provides a mechanism for the callback function to discover whether it is running on a system with

added fields.

The first object visited by callback is the main program. For the main program, the dlpi_name field will be

an empty string.

EXAMPLE
The following program displays a list of pathnames of the shared objects it has loaded. For each shared ob-

ject, the program lists some information (virtual address, size, flags, and type) for each of the objects ELF

segments.

The following shell session demonstrates the output produced by the program on an x86-64 system. The

first shared object for which output is displayed (where the name is an empty string) is the main program.

$ ./a.out

Name: "" (9 segments)

0: [ 0x400040; memsz: 1f8] flags: 0x5; PT_PHDR

1: [ 0x400238; memsz: 1c] flags: 0x4; PT_INTERP

2: [ 0x400000; memsz: ac4] flags: 0x5; PT_LOAD

3: [ 0x600e10; memsz: 240] flags: 0x6; PT_LOAD

4: [ 0x600e28; memsz: 1d0] flags: 0x6; PT_DYNAMIC

5: [ 0x400254; memsz: 44] flags: 0x4; PT_NOTE

6: [ 0x400970; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

7: [ (nil); memsz: 0] flags: 0x6; PT_GNU_STACK

8: [ 0x600e10; memsz: 1f0] flags: 0x4; PT_GNU_RELRO

Name: "linux-vdso.so.1" (4 segments)

0: [0x7ffc6edd1000; memsz: e89] flags: 0x5; PT_LOAD

1: [0x7ffc6edd1360; memsz: 110] flags: 0x4; PT_DYNAMIC

2: [0x7ffc6edd17b0; memsz: 3c] flags: 0x4; PT_NOTE

3: [0x7ffc6edd17ec; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

Name: "/lib64/libc.so.6" (10 segments)

0: [0x7f55712ce040; memsz: 230] flags: 0x5; PT_PHDR

1: [0x7f557145b980; memsz: 1c] flags: 0x4; PT_INTERP

2: [0x7f55712ce000; memsz: 1b6a5c] flags: 0x5; PT_LOAD

3: [0x7f55716857a0; memsz: 9240] flags: 0x6; PT_LOAD

4: [0x7f5571688b80; memsz: 1f0] flags: 0x6; PT_DYNAMIC

5: [0x7f55712ce270; memsz: 44] flags: 0x4; PT_NOTE

6: [0x7f55716857a0; memsz: 78] flags: 0x4; PT_TLS

7: [0x7f557145b99c; memsz: 544c] flags: 0x4; PT_GNU_EH_FRAME

8: [0x7f55712ce000; memsz: 0] flags: 0x6; PT_GNU_STACK

9: [0x7f55716857a0; memsz: 3860] flags: 0x4; PT_GNU_RELRO

Name: "/lib64/ld-linux-x86-64.so.2" (7 segments)

0: [0x7f557168f000; memsz: 20828] flags: 0x5; PT_LOAD

1: [0x7f55718afba0; memsz: 15a8] flags: 0x6; PT_LOAD

2: [0x7f55718afe10; memsz: 190] flags: 0x6; PT_DYNAMIC

3: [0x7f557168f1c8; memsz: 24] flags: 0x4; PT_NOTE

4: [0x7f55716acec4; memsz: 604] flags: 0x4; PT_GNU_EH_FRAME

5: [0x7f557168f000; memsz: 0] flags: 0x6; PT_GNU_STACK

6: [0x7f55718afba0; memsz: 460] flags: 0x4; PT_GNU_RELRO

Program source

#define _GNU_SOURCE

#include <link.h>

#include <stdlib.h>

GNU 2019-03-06 3



DL_ITERATE_PHDR(3) Linux Programmer’s Manual DL_ITERATE_PHDR(3)

#include <stdio.h>

static int

callback(struct dl_phdr_info *info, size_t size, void *data)

{

char *type;

int p_type, j;

printf("Name: \"%s\" (%d segments)\n", info−>dlpi_name,

info−>dlpi_phnum);

for (j = 0; j < info−>dlpi_phnum; j++) {

p_type = info−>dlpi_phdr[j].p_type;

type = (p_type == PT_LOAD) ? "PT_LOAD" :

(p_type == PT_DYNAMIC) ? "PT_DYNAMIC" :

(p_type == PT_INTERP) ? "PT_INTERP" :

(p_type == PT_NOTE) ? "PT_NOTE" :

(p_type == PT_INTERP) ? "PT_INTERP" :

(p_type == PT_PHDR) ? "PT_PHDR" :

(p_type == PT_TLS) ? "PT_TLS" :

(p_type == PT_GNU_EH_FRAME) ? "PT_GNU_EH_FRAME" :

(p_type == PT_GNU_STACK) ? "PT_GNU_STACK" :

(p_type == PT_GNU_RELRO) ? "PT_GNU_RELRO" : NULL;

printf(" %2d: [%14p; memsz:%7lx] flags: 0x%x; ", j,

(void *) (info−>dlpi_addr + info−>dlpi_phdr[j].p_vaddr),

info−>dlpi_phdr[j].p_memsz,

info−>dlpi_phdr[j].p_flags);

if (type != NULL)

printf("%s\n", type);

else

printf("[other (0x%x)]\n", p_type);

}

return 0;

}

int

main(int argc, char *argv[])

{

dl_iterate_phdr(callback, NULL);

exit(EXIT_SUCCESS);

}

SEE ALSO
ldd(1), objdump(1), readelf(1), dladdr(3), dlopen(3), elf(5), ld.so(8)

Executable and Linking Format Specification, available at various locations online.

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

GNU 2019-03-06 4


