
CRYPT (5) BSD File Formats Manual CRYPT (5)

NAME

crypt — storage format for hashed passphrases and available hashing methods

DESCRIPTION

The hashing methods implemented by crypt(3) are designed only to process user passphrases for storage

and authentication; they are not suitable for use as general-purpose cryptographic hashes.

Passphrase hashing is not a replacement for strong passphrases. It is always possible for an attacker with ac-

cess to the hashed passphrases to guess and check possible cleartext passphrases. However, with a strong

hashing method, guessing will be too slow for the attacker to discover a strong passphrase.

All of the hashing methods use a “salt” to perturb the hash function, so that the same passphrase may pro-

duce many possible hashes. Newer methods accept longer salt strings. The salt should be chosen at random

for each user. Salt defeats a number of attacks:

1. It is not possible to hash a passphrase once and then test it against each account’s stored hash; the hash

calculation must be repeated for each account.

2. It is not possible to tell whether two accounts use the same passphrase without successfully guessing

one of the phrases.

3. Tables of precalculated hashes of commonly used passphrases must have an entry for each possible salt,

which makes them impractically large.

All of the hashing methods are also deliberately engineered to be slow; they use many iterations of an under-

lying cryptographic primitive to increase the cost of each guess. The newer hashing methods allow the num-

ber of iterations to be adjusted, using the “CPU time cost” parameter to crypt_gensalt(3). This makes

it possible to keep the hash slow as hardware improves.

FORMAT OF HASHED PASSPHRASES

All of the hashing methods supported by crypt(3) produce a hashed passphrase which consists of four

components: prefix, options, salt, and hash. The prefix controls which hashing method is to be

used, and is the appropriate string to pass to crypt_gensalt(3) to select that method. The contents of

options, salt, and hash are up to the method. Depending on the method, the prefix and options

components may be empty.

The setting argument to crypt(3) must begin with the first three components of a valid hashed

passphrase, but anything after that is ignored. This makes authentication simple: hash the input passphrase

using the stored passphrase as the setting, and then compare the result to the stored passphrase.

Hashed passphrases are always entirely printable ASCII, and do not contain any whitespace or the characters

‘:’, ‘;’, ‘∗ ’, ‘!’, or ‘\’. (These characters are used as delimiters and special markers in the passwd(5) and

shadow(5) files.)

The syntax of each component of a hashed passphrase is up to the hashing method. ‘$’ characters usually

delimit components, and the salt and hash are usually encoded as numerals in base 64. The details of this

base-64 encoding vary among hashing methods. The common “base64” encoding specified by RFC 4648 is

usually not used.

AV AILABLE HASHING METHODS

This is a list of all the hashing methods supported by crypt(3), in decreasing order of strength. Many of

the older methods are now considered too weak to use for new passphrases. The hashed passphrase format is

expressed with extended regular expressions (see regex(7)) and does not show the division into prefix, op-

tions, salt, and hash.

Openwall Project October 11, 2017 1

CRYPT (5) BSD File Formats Manual CRYPT (5)

yescrypt

yescrypt is a scalable passphrase hashing scheme designed by Solar Designer, which is based on Colin Perci-

val’s scrypt. Recommended for new hashes.

Prefix

"y"

Hashed passphrase format

\$y\$[./A-Za-z0-9]+\$[./A-Za-z0-9]{,86}\$[./A-Za-z0-9]{43}

Maximum passphrase length

unlimited

Hash size

256 bits

Salt size

up to 512 bits

CPU time cost parameter

1 to 11 (logarithmic)

gost-yescrypt

gost-yescrypt uses the output from the yescrypt hashing method in place of a hmac message. Thus, the

yescrypt crypto properties are superseeded by the GOST R 34.11-2012 (Streebog) hash function with a 256

bit digest. This hashing method is useful in applications that need modern passphrase hashing methods, but

require to rely on the cryptographic properties of GOST algorithms. The GOST R 34.11-2012 (Streebog)

hash function has been published by the IETF as RFC 6986. Recommended for new hashes.

Prefix

"gy"

Hashed passphrase format

\$gy\$[./A-Za-z0-9]+\$[./A-Za-z0-9]{,86}\$[./A-Za-z0-9]{43}

Maximum passphrase length

unlimited

Hash size

256 bits

Salt size

up to 512 bits

CPU time cost parameter

1 to 11 (logarithmic)

scrypt

scrypt is a password-based key derivation function created by Colin Percival, originally for the Tarsnap on-

line backup service. The algorithm was specifically designed to make it costly to perform large-scale custom

hardware attacks by requiring large amounts of memory. In 2016, the scrypt algorithm was published by

IETF as RFC 7914.

Prefix

"7"

Hashed passphrase format

\$7\$[./A-Za-z0-9]{11,97}\$[./A-Za-z0-9]{43}

Openwall Project October 11, 2017 2

CRYPT (5) BSD File Formats Manual CRYPT (5)

Maximum passphrase length

unlimited

Hash size

256 bits

Salt size

up to 512 bits

CPU time cost parameter

6 to 11 (logarithmic)

bcrypt

A hash based on the Blowfish block cipher, modified to have an extra-expensive key schedule. Originally de-

veloped by Niels Provos and David Mazieres for OpenBSD and also supported on recent versions of Free-

BSD and NetBSD, on Solaris 10 and newer, and on several GNU/∗ /Linux distributions.

Prefix

"$2b$"

Hashed passphrase format

\$2[abxy]\$[0-9]{2}\$[./A-Za-z0-9]{53}

Maximum passphrase length

72 characters

Hash size

184 bits

Salt size

128 bits

CPU time cost parameter

4 to 31 (logarithmic)

The alternative prefix "$2y$" is equivalent to "$2b$". It exists for historical reasons only. The alternative

prefixes "$2a$" and "$2x$" provide bug-compatibility with crypt_blowfish 1.0.4 and earlier, which incor-

rectly processed characters with the 8th bit set.

sha512crypt

A hash based on SHA-2 with 512-bit output, originally developed by Ulrich Drepper for GNU libc. Sup-

ported on Linux but not common elsewhere. Acceptable for new hashes. The default CPU time cost param-

eter is 5000, which is too low for modern hardware.

Prefix

"6"

Hashed passphrase format

\$6\$(rounds=[1-9][0-9]+\$)?[./0-9A-Za-z]{1,16}\$[./0-9A-Za-z]{86}

Maximum passphrase length

unlimited

Hash size

512 bits

Salt size

6 to 96 bits

Openwall Project October 11, 2017 3

CRYPT (5) BSD File Formats Manual CRYPT (5)

CPU time cost parameter

1000 to 999,999,999

sha256crypt

A hash based on SHA-2 with 256-bit output, originally developed by Ulrich Drepper for GNU libc. Sup-

ported on Linux but not common elsewhere. Acceptable for new hashes. The default CPU time cost param-

eter is 5000, which is too low for modern hardware.

Prefix

"5"

Hashed passphrase format

\$5\$(rounds=[1-9][0-9]+\$)?[./0-9A-Za-z]{1,16}\$[./0-9A-Za-z]{43}

Maximum passphrase length

unlimited

Hash size

256 bits

Salt size

6 to 96 bits

CPU time cost parameter

1000 to 999,999,999

sha1crypt

A hash based on HMAC-SHA1. Originally developed by Simon Gerraty for NetBSD. Not as weak as the

DES-based hashes below, but SHA1 is so cheap on modern hardware that it should not be used for new

hashes.

Prefix

"$sha1"

Hashed passphrase format

\$sha1\$[1-9][0-9]+\$[./0-9A-Za-z]{1,64}\$[./0-9A-Za-z]{8,64}[./0-9A-

Za-z]{32}

Maximum passphrase length

unlimited

Hash size

160 bits

Salt size

6 to 384 bits

CPU time cost parameter

4 to 4,294,967,295

SunMD5

A hash based on the MD5 algorithm, with additional cleverness to make precomputation difficult, originally

developed by Alec David Muffet for Solaris. Not adopted elsewhere, to our knowledge. Not as weak as the

DES-based hashes below, but MD5 is so cheap on modern hardware that it should not be used for new

hashes.

Openwall Project October 11, 2017 4

CRYPT (5) BSD File Formats Manual CRYPT (5)

Prefix

"$md5"

Hashed passphrase format

\$md5(,rounds=[1-9][0-9]+)?\$[./0-9A-Za-z]{8}\${1,2}[./0-9A-Za-z]{22}

Maximum passphrase length

unlimited

Hash size

128 bits

Salt size

48 bits

CPU time cost parameter

4096 to 4,294,963,199

md5crypt

A hash based on the MD5 algorithm, originally developed by Poul-Henning Kamp for FreeBSD. Supported

on most free Unixes and newer versions of Solaris. Not as weak as the DES-based hashes below, but MD5 is

so cheap on modern hardware that it should not be used for new hashes. CPU time cost is not adjustable.

Prefix

"1"

Hashed passphrase format

\$1\$[ˆ$]{1,8}\$[./0-9A-Za-z]{22}

Maximum passphrase length

unlimited

Hash size

128 bits

Salt size

6 to 48 bits

CPU time cost parameter

1000

bsdicrypt (BSDI extended DES)

A weak extension of traditional DES, which eliminates the length limit, increases the salt size, and makes the

time cost tunable. It originates with BSDI and is also available on at least NetBSD, OpenBSD, and FreeBSD

due to the use of David Burren’s FreeSec library. It is better than bigcrypt and traditional DES, but still

should not be used for new hashes.

Prefix

"_"

Hashed passphrase format

_[./0-9A-Za-z]{19}

Maximum passphrase length

unlimited (ignores 8th bit)

Hash size

64 bits

Openwall Project October 11, 2017 5

CRYPT (5) BSD File Formats Manual CRYPT (5)

Effective key size

56 bits

Salt size

24 bits

CPU time cost parameter

1 to 16,777,215 (must be odd)

bigcrypt

A weak extension of traditional DES, available on some System V-derived Unixes. All it does is raise the

length limit from 8 to 128 characters, and it does this in a crude way that allows attackers to guess chunks of

a long passphrase in parallel. It should not be used for new hashes.

Prefix

"" (empty string)

Hashed passphrase format

[./0-9A-Za-z]{13,178}

Maximum passphrase length

128 characters (ignores 8th bit)

Hash size

up to 1024 bits

Effective key size

up to 896 bits

Salt size

12 bits

CPU time cost parameter

25

descrypt (Traditional DES)

The original hashing method from Unix V7, based on the DES block cipher. Because DES is cheap on mod-

ern hardware, because there are only 4096 possible salts and 2∗∗ 56 possible hashes, and because it truncates

passphrases to 8 characters, it is feasible to discover any passphrase hashed with this method. It should only

be used if you absolutely have to generate hashes that will work on an old operating system that supports

nothing else.

Prefix

"" (empty string)

Hashed passphrase format

[./0-9A-Za-z]{13}

Maximum passphrase length

8 characters (ignores 8th bit)

Hash size

64 bits

Effective key size

56 bits

Openwall Project October 11, 2017 6

CRYPT (5) BSD File Formats Manual CRYPT (5)

Salt size

12 bits

CPU time cost parameter

25

NT

The hashing method used for network authentication in some versions of the SMB/CIFS protocol. Av ailable,

for cross-compatibility’s sake, on FreeBSD. Based on MD4. Has no salt or tunable cost parameter. Like

traditional DES, it is so weak that any passphrase hashed with this method is guessable. It should only be

used if you absolutely have to generate hashes that will work on an old operating system that supports noth-

ing else.

Prefix

"3"

Hashed passphrase format

\$3\$\$[0-9a-f]{32}

Maximum passphrase length

unlimited

Hash size

256 bits

Salt size

0 bits

CPU time cost parameter

1

SEE ALSO

crypt(3), crypt_gensalt(3), getpwent(3), passwd(5), shadow(5), pam(8)

Niels Provos and David Mazieres, “A Future-Adaptable Password Scheme”, Proceedings of the 1999

USENIX Annual Technical Conference, https://www.usenix.org/events/usenix99/provos.html, June 1999.

Robert Morris and Ken Thompson, “Password Security: A Case History”, Communications of the ACM, 11,

22, http://wolfram.schneider.org/bsd/7thEdManVol2/password/password.pdf, 1979.

Openwall Project October 11, 2017 7

