
CPUSET(7) Linux Programmer’s Manual CPUSET(7)

NAME
cpuset − confine processes to processor and memory node subsets

DESCRIPTION
The cpuset filesystem is a pseudo-filesystem interface to the kernel cpuset mechanism, which is used to

control the processor placement and memory placement of processes. It is commonly mounted at

/dev/cpuset.

On systems with kernels compiled with built in support for cpusets, all processes are attached to a cpuset,

and cpusets are always present. If a system supports cpusets, then it will have the entry nodev cpuset in

the file /proc/filesystems. By mounting the cpuset filesystem (see the EXAMPLE section below), the ad-

ministrator can configure the cpusets on a system to control the processor and memory placement of pro-

cesses on that system. By default, if the cpuset configuration on a system is not modified or if the cpuset

filesystem is not even mounted, then the cpuset mechanism, though present, has no effect on the system’s

behavior.

A cpuset defines a list of CPUs and memory nodes.

The CPUs of a system include all the logical processing units on which a process can execute, including, if

present, multiple processor cores within a package and Hyper-Threads within a processor core. Memory

nodes include all distinct banks of main memory; small and SMP systems typically have just one memory

node that contains all the system’s main memory, while NUMA (non-uniform memory access) systems

have multiple memory nodes.

Cpusets are represented as directories in a hierarchical pseudo-filesystem, where the top directory in the hi-

erarchy (/dev/cpuset) represents the entire system (all online CPUs and memory nodes) and any cpuset that

is the child (descendant) of another parent cpuset contains a subset of that parent’s CPUs and memory

nodes. The directories and files representing cpusets have normal filesystem permissions.

Every process in the system belongs to exactly one cpuset. A process is confined to run only on the CPUs

in the cpuset it belongs to, and to allocate memory only on the memory nodes in that cpuset. When a

process fork(2)s, the child process is placed in the same cpuset as its parent. With sufficient privilege, a

process may be moved from one cpuset to another and the allowed CPUs and memory nodes of an existing

cpuset may be changed.

When the system begins booting, a single cpuset is defined that includes all CPUs and memory nodes on

the system, and all processes are in that cpuset. During the boot process, or later during normal system op-

eration, other cpusets may be created, as subdirectories of this top cpuset, under the control of the system

administrator, and processes may be placed in these other cpusets.

Cpusets are integrated with the sched_setaffinity(2) scheduling affinity mechanism and the mbind(2) and

set_mempolicy(2) memory-placement mechanisms in the kernel. Neither of these mechanisms let a

process make use of a CPU or memory node that is not allowed by that process’s cpuset. If changes to a

process’s cpuset placement conflict with these other mechanisms, then cpuset placement is enforced even if

it means overriding these other mechanisms. The kernel accomplishes this overriding by silently restricting

the CPUs and memory nodes requested by these other mechanisms to those allowed by the invoking

process’s cpuset. This can result in these other calls returning an error, if for example, such a call ends up

requesting an empty set of CPUs or memory nodes, after that request is restricted to the invoking process’s

cpuset.

Typically, a cpuset is used to manage the CPU and memory-node confinement for a set of cooperating pro-

cesses such as a batch scheduler job, and these other mechanisms are used to manage the placement of indi-

vidual processes or memory regions within that set or job.

FILES
Each directory below /dev/cpuset represents a cpuset and contains a fixed set of pseudo-files describing the

state of that cpuset.

New cpusets are created using the mkdir(2) system call or the mkdir(1) command. The properties of a

cpuset, such as its flags, allowed CPUs and memory nodes, and attached processes, are queried and modi-

fied by reading or writing to the appropriate file in that cpuset’s directory, as listed below.

Linux 2017-09-15 1

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

The pseudo-files in each cpuset directory are automatically created when the cpuset is created, as a result of

the mkdir(2) invocation. It is not possible to directly add or remove these pseudo-files.

A cpuset directory that contains no child cpuset directories, and has no attached processes, can be removed

using rmdir(2) or rmdir(1). It is not necessary, or possible, to remove the pseudo-files inside the directory

before removing it.

The pseudo-files in each cpuset directory are small text files that may be read and written using traditional

shell utilities such as cat(1), and echo(1), or from a program by using file I/O library functions or system

calls, such as open(2), read(2), write(2), and close(2).

The pseudo-files in a cpuset directory represent internal kernel state and do not have any persistent image

on disk. Each of these per-cpuset files is listed and described below.

tasks List of the process IDs (PIDs) of the processes in that cpuset. The list is formatted as a series of

ASCII decimal numbers, each followed by a newline. A process may be added to a cpuset (auto-

matically removing it from the cpuset that previously contained it) by writing its PID to that

cpuset’s tasks file (with or without a trailing newline).

Warning: only one PID may be written to the tasks file at a time. If a string is written that con-

tains more than one PID, only the first one will be used.

notify_on_release

Flag (0 or 1). If set (1), that cpuset will receive special handling after it is released, that is, after all

processes cease using it (i.e., terminate or are moved to a different cpuset) and all child cpuset di-

rectories have been removed. See the Notify On Release section, below.

cpuset.cpus

List of the physical numbers of the CPUs on which processes in that cpuset are allowed to execute.

See List Format below for a description of the format of cpus.

The CPUs allowed to a cpuset may be changed by writing a new list to its cpus file.

cpuset.cpu_exclusive

Flag (0 or 1). If set (1), the cpuset has exclusive use of its CPUs (no sibling or cousin cpuset may

overlap CPUs). By default, this is off (0). Newly created cpusets also initially default this to off

(0).

Tw o cpusets are sibling cpusets if they share the same parent cpuset in the /dev/cpuset hierarchy.

Tw o cpusets are cousin cpusets if neither is the ancestor of the other. Reg ardless of the cpu_exclu-

sive setting, if one cpuset is the ancestor of another, and if both of these cpusets have nonempty

cpus, then their cpus must overlap, because the cpus of any cpuset are always a subset of the cpus

of its parent cpuset.

cpuset.mems

List of memory nodes on which processes in this cpuset are allowed to allocate memory. See List

Format below for a description of the format of mems.

cpuset.mem_exclusive

Flag (0 or 1). If set (1), the cpuset has exclusive use of its memory nodes (no sibling or cousin

may overlap). Also if set (1), the cpuset is a Hardwall cpuset (see below). By default, this is off

(0). Newly created cpusets also initially default this to off (0).

Regardless of the mem_exclusive setting, if one cpuset is the ancestor of another, then their mem-

ory nodes must overlap, because the memory nodes of any cpuset are always a subset of the mem-

ory nodes of that cpuset’s parent cpuset.

cpuset.mem_hardwall (since Linux 2.6.26)

Flag (0 or 1). If set (1), the cpuset is a Hardwall cpuset (see below). Unlike mem_exclusive,

there is no constraint on whether cpusets marked mem_hardwall may have overlapping memory

nodes with sibling or cousin cpusets. By default, this is off (0). Newly created cpusets also ini-

tially default this to off (0).

Linux 2017-09-15 2

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

cpuset.memory_migrate (since Linux 2.6.16)

Flag (0 or 1). If set (1), then memory migration is enabled. By default, this is off (0). See the

Memory Migration section, below.

cpuset.memory_pressure (since Linux 2.6.16)

A measure of how much memory pressure the processes in this cpuset are causing. See the Mem-

ory Pressure section, below. Unless memory_pressure_enabled is enabled, always has value zero

(0). This file is read-only. See the WARNINGS section, below.

cpuset.memory_pressure_enabled (since Linux 2.6.16)

Flag (0 or 1). This file is present only in the root cpuset, normally /dev/cpuset. If set (1), the

memory_pressure calculations are enabled for all cpusets in the system. By default, this is off (0).

See the Memory Pressure section, below.

cpuset.memory_spread_page (since Linux 2.6.17)

Flag (0 or 1). If set (1), pages in the kernel page cache (filesystem buffers) are uniformly spread

across the cpuset. By default, this is off (0) in the top cpuset, and inherited from the parent cpuset

in newly created cpusets. See the Memory Spread section, below.

cpuset.memory_spread_slab (since Linux 2.6.17)

Flag (0 or 1). If set (1), the kernel slab caches for file I/O (directory and inode structures) are uni-

formly spread across the cpuset. By defaultBy default, is off (0) in the top cpuset, and inherited

from the parent cpuset in newly created cpusets. See the Memory Spread section, below.

cpuset.sched_load_balance (since Linux 2.6.24)

Flag (0 or 1). If set (1, the default) the kernel will automatically load balance processes in that

cpuset over the allowed CPUs in that cpuset. If cleared (0) the kernel will avoid load balancing

processes in this cpuset, unless some other cpuset with overlapping CPUs has its sched_load_bal-

ance flag set. See Scheduler Load Balancing, below, for further details.

cpuset.sched_relax_domain_level (since Linux 2.6.26)

Integer, between −1 and a small positive value. The sched_relax_domain_level controls the width

of the range of CPUs over which the kernel scheduler performs immediate rebalancing of runnable

tasks across CPUs. If sched_load_balance is disabled, then the setting of sched_relax_do-

main_level does not matter, as no such load balancing is done. If sched_load_balance is enabled,

then the higher the value of the sched_relax_domain_level, the wider the range of CPUs over

which immediate load balancing is attempted. See Scheduler Relax Domain Level, below, for

further details.

In addition to the above pseudo-files in each directory below /dev/cpuset, each process has a pseudo-file,

/proc/<pid>/cpuset, that displays the path of the process’s cpuset directory relative to the root of the cpuset

filesystem.

Also the /proc/<pid>/status file for each process has four added lines, displaying the process’s Cpus_al-

lowed (on which CPUs it may be scheduled) and Mems_allowed (on which memory nodes it may obtain

memory), in the two formats Mask Format and List Format (see below) as shown in the following exam-

ple:

Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff

Cpus_allowed_list: 0−127

Mems_allowed: ffffffff,ffffffff

Mems_allowed_list: 0−63

The "allowed" fields were added in Linux 2.6.24; the "allowed_list" fields were added in Linux 2.6.26.

EXTENDED CAPABILITIES
In addition to controlling which cpus and mems a process is allowed to use, cpusets provide the following

extended capabilities.

Exclusive cpusets

If a cpuset is marked cpu_exclusive or mem_exclusive, no other cpuset, other than a direct ancestor or de-

scendant, may share any of the same CPUs or memory nodes.

Linux 2017-09-15 3

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

A cpuset that is mem_exclusive restricts kernel allocations for buffer cache pages and other internal kernel

data pages commonly shared by the kernel across multiple users. All cpusets, whether mem_exclusive or

not, restrict allocations of memory for user space. This enables configuring a system so that several inde-

pendent jobs can share common kernel data, while isolating each job’s user allocation in its own cpuset. To

do this, construct a large mem_exclusive cpuset to hold all the jobs, and construct child, non-mem_exclusive

cpusets for each individual job. Only a small amount of kernel memory, such as requests from interrupt

handlers, is allowed to be placed on memory nodes outside even a mem_exclusive cpuset.

Hardwall

A cpuset that has mem_exclusive or mem_hardwall set is a hardwall cpuset. A hardwall cpuset restricts

kernel allocations for page, buffer, and other data commonly shared by the kernel across multiple users. All

cpusets, whether hardwall or not, restrict allocations of memory for user space.

This enables configuring a system so that several independent jobs can share common kernel data, such as

filesystem pages, while isolating each job’s user allocation in its own cpuset. To do this, construct a large

hardwall cpuset to hold all the jobs, and construct child cpusets for each individual job which are not hard-

wall cpusets.

Only a small amount of kernel memory, such as requests from interrupt handlers, is allowed to be taken

outside even a hardwall cpuset.

Notify on release

If the notify_on_release flag is enabled (1) in a cpuset, then whenever the last process in the cpuset leaves

(exits or attaches to some other cpuset) and the last child cpuset of that cpuset is removed, the kernel will

run the command /sbin/cpuset_release_agent, supplying the pathname (relative to the mount point of the

cpuset filesystem) of the abandoned cpuset. This enables automatic removal of abandoned cpusets.

The default value of notify_on_release in the root cpuset at system boot is disabled (0). The default value

of other cpusets at creation is the current value of their parent’s notify_on_release setting.

The command /sbin/cpuset_release_agent is invoked, with the name (/dev/cpuset relative path) of the to-

be-released cpuset in argv[1].

The usual contents of the command /sbin/cpuset_release_agent is simply the shell script:

#!/bin/sh

rmdir /dev/cpuset/$1

As with other flag values below, this flag can be changed by writing an ASCII number 0 or 1 (with optional

trailing newline) into the file, to clear or set the flag, respectively.

Memory pressure

The memory_pressure of a cpuset provides a simple per-cpuset running average of the rate that the pro-

cesses in a cpuset are attempting to free up in-use memory on the nodes of the cpuset to satisfy additional

memory requests.

This enables batch managers that are monitoring jobs running in dedicated cpusets to efficiently detect what

level of memory pressure that job is causing.

This is useful both on tightly managed systems running a wide mix of submitted jobs, which may choose to

terminate or reprioritize jobs that are trying to use more memory than allowed on the nodes assigned them,

and with tightly coupled, long-running, massively parallel scientific computing jobs that will dramatically

fail to meet required performance goals if they start to use more memory than allowed to them.

This mechanism provides a very economical way for the batch manager to monitor a cpuset for signs of

memory pressure. It’s up to the batch manager or other user code to decide what action to take if it detects

signs of memory pressure.

Unless memory pressure calculation is enabled by setting the pseudo-file /dev/cpuset/cpuset.memory_pres-

sure_enabled , it is not computed for any cpuset, and reads from any memory_pressure always return zero,

as represented by the ASCII string "0\n". See the WARNINGS section, below.

A per-cpuset, running average is employed for the following reasons:

Linux 2017-09-15 4

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

* Because this meter is per-cpuset rather than per-process or per virtual memory region, the system load

imposed by a batch scheduler monitoring this metric is sharply reduced on large systems, because a

scan of the tasklist can be avoided on each set of queries.

* Because this meter is a running average rather than an accumulating counter, a batch scheduler can de-

tect memory pressure with a single read, instead of having to read and accumulate results for a period of

time.

* Because this meter is per-cpuset rather than per-process, the batch scheduler can obtain the key infor-

mation—memory pressure in a cpuset—with a single read, rather than having to query and accumulate

results over all the (dynamically changing) set of processes in the cpuset.

The memory_pressure of a cpuset is calculated using a per-cpuset simple digital filter that is kept within the

kernel. For each cpuset, this filter tracks the recent rate at which processes attached to that cpuset enter the

kernel direct reclaim code.

The kernel direct reclaim code is entered whenever a process has to satisfy a memory page request by first

finding some other page to repurpose, due to lack of any readily available already free pages. Dirty filesys-

tem pages are repurposed by first writing them to disk. Unmodified filesystem buffer pages are repurposed

by simply dropping them, though if that page is needed again, it will have to be reread from disk.

The cpuset.memory_pressure file provides an integer number representing the recent (half-life of 10 sec-

onds) rate of entries to the direct reclaim code caused by any process in the cpuset, in units of reclaims at-

tempted per second, times 1000.

Memory spread

There are two Boolean flag files per cpuset that control where the kernel allocates pages for the filesystem

buffers and related in-kernel data structures. They are called cpuset.memory_spread_page and cpuset.mem-

ory_spread_slab.

If the per-cpuset Boolean flag file cpuset.memory_spread_page is set, then the kernel will spread the

filesystem buffers (page cache) evenly over all the nodes that the faulting process is allowed to use, instead

of preferring to put those pages on the node where the process is running.

If the per-cpuset Boolean flag file cpuset.memory_spread_slab is set, then the kernel will spread some

filesystem-related slab caches, such as those for inodes and directory entries, evenly over all the nodes that

the faulting process is allowed to use, instead of preferring to put those pages on the node where the process

is running.

The setting of these flags does not affect the data segment (see brk(2)) or stack segment pages of a process.

By default, both kinds of memory spreading are off and the kernel prefers to allocate memory pages on the

node local to where the requesting process is running. If that node is not allowed by the process’s NUMA

memory policy or cpuset configuration or if there are insufficient free memory pages on that node, then the

kernel looks for the nearest node that is allowed and has sufficient free memory.

When new cpusets are created, they inherit the memory spread settings of their parent.

Setting memory spreading causes allocations for the affected page or slab caches to ignore the process’s

NUMA memory policy and be spread instead. However, the effect of these changes in memory placement

caused by cpuset-specified memory spreading is hidden from the mbind(2) or set_mempolicy(2) calls.

These two NUMA memory policy calls always appear to behave as if no cpuset-specified memory spread-

ing is in effect, even if it is. If cpuset memory spreading is subsequently turned off, the NUMA memory

policy most recently specified by these calls is automatically reapplied.

Both cpuset.memory_spread_page and cpuset.memory_spread_slab are Boolean flag files. By default, they

contain "0", meaning that the feature is off for that cpuset. If a "1" is written to that file, that turns the

named feature on.

Cpuset-specified memory spreading behaves similarly to what is known (in other contexts) as round-robin

or interleave memory placement.

Cpuset-specified memory spreading can provide substantial performance improvements for jobs that:

Linux 2017-09-15 5

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

a) need to place thread-local data on memory nodes close to the CPUs which are running the threads that

most frequently access that data; but also

b) need to access large filesystem data sets that must to be spread across the several nodes in the job’s

cpuset in order to fit.

Without this policy, the memory allocation across the nodes in the job’s cpuset can become very uneven, es-

pecially for jobs that might have just a single thread initializing or reading in the data set.

Memory migration

Normally, under the default setting (disabled) of cpuset.memory_migrate, once a page is allocated (given a

physical page of main memory), then that page stays on whatever node it was allocated, so long as it re-

mains allocated, even if the cpuset’s memory-placement policy mems subsequently changes.

When memory migration is enabled in a cpuset, if the mems setting of the cpuset is changed, then any

memory page in use by any process in the cpuset that is on a memory node that is no longer allowed will be

migrated to a memory node that is allowed.

Furthermore, if a process is moved into a cpuset with memory_migrate enabled, any memory pages it uses

that were on memory nodes allowed in its previous cpuset, but which are not allowed in its new cpuset, will

be migrated to a memory node allowed in the new cpuset.

The relative placement of a migrated page within the cpuset is preserved during these migration operations

if possible. For example, if the page was on the second valid node of the prior cpuset, then the page will be

placed on the second valid node of the new cpuset, if possible.

Scheduler load balancing

The kernel scheduler automatically load balances processes. If one CPU is underutilized, the kernel will

look for processes on other more overloaded CPUs and move those processes to the underutilized CPU,

within the constraints of such placement mechanisms as cpusets and sched_setaffinity(2).

The algorithmic cost of load balancing and its impact on key shared kernel data structures such as the

process list increases more than linearly with the number of CPUs being balanced. For example, it costs

more to load balance across one large set of CPUs than it does to balance across two smaller sets of CPUs,

each of half the size of the larger set. (The precise relationship between the number of CPUs being bal-

anced and the cost of load balancing depends on implementation details of the kernel process scheduler,

which is subject to change over time, as improved kernel scheduler algorithms are implemented.)

The per-cpuset flag sched_load_balance provides a mechanism to suppress this automatic scheduler load

balancing in cases where it is not needed and suppressing it would have worthwhile performance benefits.

By default, load balancing is done across all CPUs, except those marked isolated using the kernel boot time

"isolcpus=" argument. (See Scheduler Relax Domain Level, below, to change this default.)

This default load balancing across all CPUs is not well suited to the following two situations:

* On large systems, load balancing across many CPUs is expensive. If the system is managed using

cpusets to place independent jobs on separate sets of CPUs, full load balancing is unnecessary.

* Systems supporting real-time on some CPUs need to minimize system overhead on those CPUs, includ-

ing avoiding process load balancing if that is not needed.

When the per-cpuset flag sched_load_balance is enabled (the default setting), it requests load balancing

across all the CPUs in that cpuset’s allowed CPUs, ensuring that load balancing can move a process (not

otherwise pinned, as by sched_setaffinity(2)) from any CPU in that cpuset to any other.

When the per-cpuset flag sched_load_balance is disabled, then the scheduler will avoid load balancing

across the CPUs in that cpuset, except in so far as is necessary because some overlapping cpuset has

sched_load_balance enabled.

So, for example, if the top cpuset has the flag sched_load_balance enabled, then the scheduler will load

balance across all CPUs, and the setting of the sched_load_balance flag in other cpusets has no effect, as

we’re already fully load balancing.

Therefore in the above two situations, the flag sched_load_balance should be disabled in the top cpuset,

Linux 2017-09-15 6

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

and only some of the smaller, child cpusets would have this flag enabled.

When doing this, you don’t usually want to leave any unpinned processes in the top cpuset that might use

nontrivial amounts of CPU, as such processes may be artificially constrained to some subset of CPUs, de-

pending on the particulars of this flag setting in descendant cpusets. Even if such a process could use spare

CPU cycles in some other CPUs, the kernel scheduler might not consider the possibility of load balancing

that process to the underused CPU.

Of course, processes pinned to a particular CPU can be left in a cpuset that disables sched_load_balance as

those processes aren’t going anywhere else anyway.

Scheduler relax domain level

The kernel scheduler performs immediate load balancing whenever a CPU becomes free or another task be-

comes runnable. This load balancing works to ensure that as many CPUs as possible are usefully employed

running tasks. The kernel also performs periodic load balancing off the software clock described in

time(7). The setting of sched_relax_domain_level applies only to immediate load balancing. Regardless

of the sched_relax_domain_level setting, periodic load balancing is attempted over all CPUs (unless dis-

abled by turning off sched_load_balance.) In any case, of course, tasks will be scheduled to run only on

CPUs allowed by their cpuset, as modified by sched_setaffinity(2) system calls.

On small systems, such as those with just a few CPUs, immediate load balancing is useful to improve sys-

tem interactivity and to minimize wasteful idle CPU cycles. But on large systems, attempting immediate

load balancing across a large number of CPUs can be more costly than it is worth, depending on the partic-

ular performance characteristics of the job mix and the hardware.

The exact meaning of the small integer values of sched_relax_domain_level will depend on internal imple-

mentation details of the kernel scheduler code and on the non-uniform architecture of the hardware. Both

of these will evolve over time and vary by system architecture and kernel version.

As of this writing, when this capability was introduced in Linux 2.6.26, on certain popular architectures, the

positive values of sched_relax_domain_level have the following meanings.

(1) Perform immediate load balancing across Hyper-Thread siblings on the same core.

(2) Perform immediate load balancing across other cores in the same package.

(3) Perform immediate load balancing across other CPUs on the same node or blade.

(4) Perform immediate load balancing across over sev eral (implementation detail) nodes [On NUMA sys-

tems].

(5) Perform immediate load balancing across over all CPUs in system [On NUMA systems].

The sched_relax_domain_level value of zero (0) always means don’t perform immediate load balancing,

hence that load balancing is done only periodically, not immediately when a CPU becomes available or an-

other task becomes runnable.

The sched_relax_domain_level value of minus one (−1) always means use the system default value. The

system default value can vary by architecture and kernel version. This system default value can be changed

by kernel boot-time "relax_domain_level=" argument.

In the case of multiple overlapping cpusets which have conflicting sched_relax_domain_level values, then

the highest such value applies to all CPUs in any of the overlapping cpusets. In such cases, the value mi-

nus one (−1) is the lowest value, overridden by any other value, and the value zero (0) is the next lowest

value.

FORMATS
The following formats are used to represent sets of CPUs and memory nodes.

Mask format

The Mask Format is used to represent CPU and memory-node bit masks in the /proc/<pid>/status file.

This format displays each 32-bit word in hexadecimal (using ASCII characters "0" - "9" and "a" - "f");

words are filled with leading zeros, if required. For masks longer than one word, a comma separator is used

between words. Words are displayed in big-endian order, which has the most significant bit first. The hex

digits within a word are also in big-endian order.

Linux 2017-09-15 7

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

The number of 32-bit words displayed is the minimum number needed to display all bits of the bit mask,

based on the size of the bit mask.

Examples of the Mask Format:

00000001 # just bit 0 set

40000000,00000000,00000000 # just bit 94 set

00000001,00000000,00000000 # just bit 64 set

000000ff,00000000 # bits 32−39 set

00000000,000e3862 # 1,5,6,11−13,17−19 set

A mask with bits 0, 1, 2, 4, 8, 16, 32, and 64 set displays as:

00000001,00000001,00010117

The first "1" is for bit 64, the second for bit 32, the third for bit 16, the fourth for bit 8, the fifth for bit 4,

and the "7" is for bits 2, 1, and 0.

List format

The List Format for cpus and mems is a comma-separated list of CPU or memory-node numbers and

ranges of numbers, in ASCII decimal.

Examples of the List Format:

0−4,9 # bits 0, 1, 2, 3, 4, and 9 set

0−2,7,12−14 # bits 0, 1, 2, 7, 12, 13, and 14 set

RULES
The following rules apply to each cpuset:

* Its CPUs and memory nodes must be a (possibly equal) subset of its parent’s.

* It can be marked cpu_exclusive only if its parent is.

* It can be marked mem_exclusive only if its parent is.

* If it is cpu_exclusive, its CPUs may not overlap any sibling.

* If it is memory_exclusive, its memory nodes may not overlap any sibling.

PERMISSIONS
The permissions of a cpuset are determined by the permissions of the directories and pseudo-files in the

cpuset filesystem, normally mounted at /dev/cpuset.

For instance, a process can put itself in some other cpuset (than its current one) if it can write the tasks file

for that cpuset. This requires execute permission on the encompassing directories and write permission on

the tasks file.

An additional constraint is applied to requests to place some other process in a cpuset. One process may

not attach another to a cpuset unless it would have permission to send that process a signal (see kill(2)).

A process may create a child cpuset if it can access and write the parent cpuset directory. It can modify the

CPUs or memory nodes in a cpuset if it can access that cpuset’s directory (execute permissions on the each

of the parent directories) and write the corresponding cpus or mems file.

There is one minor difference between the manner in which these permissions are evaluated and the manner

in which normal filesystem operation permissions are evaluated. The kernel interprets relative pathnames

starting at a process’s current working directory. Even if one is operating on a cpuset file, relative path-

names are interpreted relative to the process’s current working directory, not relative to the process’s current

cpuset. The only ways that cpuset paths relative to a process’s current cpuset can be used are if either the

process’s current working directory is its cpuset (it first did a cd or chdir(2) to its cpuset directory beneath

/dev/cpuset, which is a bit unusual) or if some user code converts the relative cpuset path to a full filesys-

tem path.

In theory, this means that user code should specify cpusets using absolute pathnames, which requires know-

ing the mount point of the cpuset filesystem (usually, but not necessarily, /dev/cpuset). In practice, all user

Linux 2017-09-15 8

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

level code that this author is aware of simply assumes that if the cpuset filesystem is mounted, then it is

mounted at /dev/cpuset. Furthermore, it is common practice for carefully written user code to verify the

presence of the pseudo-file /dev/cpuset/tasks in order to verify that the cpuset pseudo-filesystem is cur-

rently mounted.

WARNINGS
Enabling memory_pressure

By default, the per-cpuset file cpuset.memory_pressure always contains zero (0). Unless this feature is en-

abled by writing "1" to the pseudo-file /dev/cpuset/cpuset.memory_pressure_enabled , the kernel does not

compute per-cpuset memory_pressure.

Using the echo command

When using the echo command at the shell prompt to change the values of cpuset files, beware that the

built-in echo command in some shells does not display an error message if the write(2) system call fails.

For example, if the command:

echo 19 > cpuset.mems

failed because memory node 19 was not allowed (perhaps the current system does not have a memory node

19), then the echo command might not display any error. It is better to use the /bin/echo external command

to change cpuset file settings, as this command will display write(2) errors, as in the example:

/bin/echo 19 > cpuset.mems

/bin/echo: write error: Invalid argument

EXCEPTIONS
Memory placement

Not all allocations of system memory are constrained by cpusets, for the following reasons.

If hot-plug functionality is used to remove all the CPUs that are currently assigned to a cpuset, then the ker-

nel will automatically update the cpus_allowed of all processes attached to CPUs in that cpuset to allow all

CPUs. When memory hot-plug functionality for removing memory nodes is available, a similar exception

is expected to apply there as well. In general, the kernel prefers to violate cpuset placement, rather than

starving a process that has had all its allowed CPUs or memory nodes taken offline. User code should re-

configure cpusets to refer only to online CPUs and memory nodes when using hot-plug to add or remove

such resources.

A few kernel-critical, internal memory-allocation requests, marked GFP_ATOMIC, must be satisfied imme-

diately. The kernel may drop some request or malfunction if one of these allocations fail. If such a request

cannot be satisfied within the current process’s cpuset, then we relax the cpuset, and look for memory any-

where we can find it. It’s better to violate the cpuset than stress the kernel.

Allocations of memory requested by kernel drivers while processing an interrupt lack any relevant process

context, and are not confined by cpusets.

Renaming cpusets

You can use the rename(2) system call to rename cpusets. Only simple renaming is supported; that is,

changing the name of a cpuset directory is permitted, but moving a directory into a different directory is not

permitted.

ERRORS
The Linux kernel implementation of cpusets sets errno to specify the reason for a failed system call affect-

ing cpusets.

The possible errno settings and their meaning when set on a failed cpuset call are as listed below.

E2BIG Attempted a write(2) on a special cpuset file with a length larger than some kernel-determined up-

per limit on the length of such writes.

EACCES

Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file when one lacks per-

mission to move that process.

Linux 2017-09-15 9

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

EACCES

Attempted to add, using write(2), a CPU or memory node to a cpuset, when that CPU or memory

node was not already in its parent.

EACCES

Attempted to set, using write(2), cpuset.cpu_exclusive or cpuset.mem_exclusive on a cpuset

whose parent lacks the same setting.

EACCES

Attempted to write(2) a cpuset.memory_pressure file.

EACCES

Attempted to create a file in a cpuset directory.

EBUSY

Attempted to remove, using rmdir(2), a cpuset with attached processes.

EBUSY

Attempted to remove, using rmdir(2), a cpuset with child cpusets.

EBUSY

Attempted to remove a CPU or memory node from a cpuset that is also in a child of that cpuset.

EEXIST

Attempted to create, using mkdir(2), a cpuset that already exists.

EEXIST

Attempted to rename(2) a cpuset to a name that already exists.

EFAULT

Attempted to read(2) or write(2) a cpuset file using a buffer that is outside the writing processes

accessible address space.

EINVAL

Attempted to change a cpuset, using write(2), in a way that would violate a cpu_exclusive or

mem_exclusive attribute of that cpuset or any of its siblings.

EINVAL

Attempted to write(2) an empty cpuset.cpus or cpuset.mems list to a cpuset which has attached

processes or child cpusets.

EINVAL

Attempted to write(2) a cpuset.cpus or cpuset.mems list which included a range with the second

number smaller than the first number.

EINVAL

Attempted to write(2) a cpuset.cpus or cpuset.mems list which included an invalid character in the

string.

EINVAL

Attempted to write(2) a list to a cpuset.cpus file that did not include any online CPUs.

EINVAL

Attempted to write(2) a list to a cpuset.mems file that did not include any online memory nodes.

EINVAL

Attempted to write(2) a list to a cpuset.mems file that included a node that held no memory.

EIO Attempted to write(2) a string to a cpuset tasks file that does not begin with an ASCII decimal in-

teger.

EIO Attempted to rename(2) a cpuset into a different directory.

ENAMETOOLONG

Attempted to read(2) a /proc/<pid>/cpuset file for a cpuset path that is longer than the kernel

page size.

Linux 2017-09-15 10

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

ENAMETOOLONG

Attempted to create, using mkdir(2), a cpuset whose base directory name is longer than 255 char-

acters.

ENAMETOOLONG

Attempted to create, using mkdir(2), a cpuset whose full pathname, including the mount point

(typically "/dev/cpuset/") prefix, is longer than 4095 characters.

ENODEV

The cpuset was removed by another process at the same time as a write(2) was attempted on one

of the pseudo-files in the cpuset directory.

ENOENT

Attempted to create, using mkdir(2), a cpuset in a parent cpuset that doesn’t exist.

ENOENT

Attempted to access(2) or open(2) a nonexistent file in a cpuset directory.

ENOMEM

Insufficient memory is available within the kernel; can occur on a variety of system calls affecting

cpusets, but only if the system is extremely short of memory.

ENOSPC

Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file when the cpuset had

an empty cpuset.cpus or empty cpuset.mems setting.

ENOSPC

Attempted to write(2) an empty cpuset.cpus or cpuset.mems setting to a cpuset that has tasks at-

tached.

ENOTDIR

Attempted to rename(2) a nonexistent cpuset.

EPERM

Attempted to remove a file from a cpuset directory.

ERANGE

Specified a cpuset.cpus or cpuset.mems list to the kernel which included a number too large for the

kernel to set in its bit masks.

ESRCH

Attempted to write(2) the process ID (PID) of a nonexistent process to a cpuset tasks file.

VERSIONS
Cpusets appeared in version 2.6.12 of the Linux kernel.

NOTES
Despite its name, the pid parameter is actually a thread ID, and each thread in a threaded group can be at-

tached to a different cpuset. The value returned from a call to gettid(2) can be passed in the argument pid .

BUGS
cpuset.memory_pressure cpuset files can be opened for writing, creation, or truncation, but then the

write(2) fails with errno set to EACCES, and the creation and truncation options on open(2) have no ef-

fect.

EXAMPLE
The following examples demonstrate querying and setting cpuset options using shell commands.

Creating and attaching to a cpuset.

To create a new cpuset and attach the current command shell to it, the steps are:

1) mkdir /dev/cpuset (if not already done)

2) mount −t cpuset none /dev/cpuset (if not already done)

3) Create the new cpuset using mkdir(1).

Linux 2017-09-15 11

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

4) Assign CPUs and memory nodes to the new cpuset.

5) Attach the shell to the new cpuset.

For example, the following sequence of commands will set up a cpuset named "Charlie", containing just

CPUs 2 and 3, and memory node 1, and then attach the current shell to that cpuset.

$ mkdir /dev/cpuset

$ mount −t cpuset cpuset /dev/cpuset

$ cd /dev/cpuset

$ mkdir Charlie

$ cd Charlie

$ /bin/echo 2−3 > cpuset.cpus

$ /bin/echo 1 > cpuset.mems

$ /bin/echo $$ > tasks

The current shell is now running in cpuset Charlie

The next line should display ’/Charlie’

$ cat /proc/self/cpuset

Migrating a job to different memory nodes.

To migrate a job (the set of processes attached to a cpuset) to different CPUs and memory nodes in the sys-

tem, including moving the memory pages currently allocated to that job, perform the following steps.

1) Let’s say we want to move the job in cpuset alpha (CPUs 4–7 and memory nodes 2–3) to a new cpuset

beta (CPUs 16–19 and memory nodes 8–9).

2) First create the new cpuset beta.

3) Then allow CPUs 16–19 and memory nodes 8–9 in beta.

4) Then enable memory_migration in beta.

5) Then move each process from alpha to beta.

The following sequence of commands accomplishes this.

$ cd /dev/cpuset

$ mkdir beta

$ cd beta

$ /bin/echo 16−19 > cpuset.cpus

$ /bin/echo 8−9 > cpuset.mems

$ /bin/echo 1 > cpuset.memory_migrate

$ while read i; do /bin/echo $i; done < ../alpha/tasks > tasks

The above should move any processes in alpha to beta, and any memory held by these processes on mem-

ory nodes 2–3 to memory nodes 8–9, respectively.

Notice that the last step of the above sequence did not do:

$ cp ../alpha/tasks tasks

The while loop, rather than the seemingly easier use of the cp(1) command, was necessary because only

one process PID at a time may be written to the tasks file.

The same effect (writing one PID at a time) as the while loop can be accomplished more efficiently, in

fewer keystrokes and in syntax that works on any shell, but alas more obscurely, by using the −u (un-

buffered) option of sed(1):

$ sed −un p < ../alpha/tasks > tasks

SEE ALSO
taskset(1), get_mempolicy(2), getcpu(2), mbind(2), sched_getaffinity(2), sched_setaffinity(2),

sched_setscheduler(2), set_mempolicy(2), CPU_SET(3), proc(5), cgroups(7), numa(7), sched(7), mi-

gratepages(8), numactl(8)

Documentation/cgroup−v1/cpusets.txt in the Linux kernel source tree (or Documentation/cpusets.txt before

Linux 2.6.29)

Linux 2017-09-15 12

CPUSET(7) Linux Programmer’s Manual CPUSET(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 13

