
CLOSE(2) Linux Programmer’s Manual CLOSE(2)

NAME
close − close a file descriptor

SYNOPSIS
#include <unistd.h>

int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused. Any record locks

(see fcntl(2)) held on the file it was associated with, and owned by the process, are removed (regardless of

the file descriptor that was used to obtain the lock).

If fd is the last file descriptor referring to the underlying open file description (see open(2)), the resources

associated with the open file description are freed; if the file descriptor was the last reference to a file which

has been removed using unlink(2), the file is deleted.

RETURN VALUE
close() returns zero on success. On error, −1 is returned, and errno is set appropriately.

ERRORS
EBADF

fd isn’t a valid open file descriptor.

EINTR

The close() call was interrupted by a signal; see signal(7).

EIO An I/O error occurred.

ENOSPC, EDQUOT

On NFS, these errors are not normally reported against the first write which exceeds the available

storage space, but instead against a subsequent write(2), fsync(2), or close().

See NOTES for a discussion of why close() should not be retried after an error.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

NOTES
A successful close does not guarantee that the data has been successfully saved to disk, as the kernel uses

the buffer cache to defer writes. Typically, filesystems do not flush buffers when a file is closed. If you

need to be sure that the data is physically stored on the underlying disk, use fsync(2). (It will depend on the

disk hardware at this point.)

The close-on-exec file descriptor flag can be used to ensure that a file descriptor is automatically closed

upon a successful execve(2); see fcntl(2) for details.

It is probably unwise to close file descriptors while they may be in use by system calls in other threads in

the same process. Since a file descriptor may be reused, there are some obscure race conditions that may

cause unintended side effects.

Dealing with error returns from close()

A careful programmer will check the return value of close(), since it is quite possible that errors on a previ-

ous write(2) operation are reported only on the final close() that releases the open file description. Failing

to check the return value when closing a file may lead to silent loss of data. This can especially be ob-

served with NFS and with disk quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a warning to the appli-

cation that there may still be I/O pending or there may have been failed I/O) or remedial purposes (e.g.,

writing the file once more or creating a backup).

Retrying the close() after a failure return is the wrong thing to do, since this may cause a reused file de-

scriptor from another thread to be closed. This can occur because the Linux kernel always releases the file

descriptor early in the close operation, freeing it for reuse; the steps that may return an error, such as flush-

ing data to the filesystem or device, occur only later in the close operation.

Linux 2019-10-10 1



CLOSE(2) Linux Programmer’s Manual CLOSE(2)

Many other implementations similarly always close the file descriptor (except in the case of EBADF,

meaning that the file descriptor was invalid) even if they subsequently report an error on return from

close(). POSIX.1 is currently silent on this point, but there are plans to mandate this behavior in the next

major release of the standard.

A careful programmer who wants to know about I/O errors may precede close() with a call to fsync(2).

The EINTR error is a somewhat special case. Regarding the EINTR error, POSIX.1-2013 says:

If close() is interrupted by a signal that is to be caught, it shall return −1 with errno set to EINTR

and the state of fildes is unspecified.

This permits the behavior that occurs on Linux and many other implementations, where, as with other er-

rors that may be reported by close(), the file descriptor is guaranteed to be closed. However, it also permits

another possibility: that the implementation returns an EINTR error and keeps the file descriptor open.

(According to its documentation, HP-UX’s close() does this.) The caller must then once more use close()

to close the file descriptor, to avoid file descriptor leaks. This divergence in implementation behaviors pro-

vides a difficult hurdle for portable applications, since on many implementations, close() must not be called

again after an EINTR error, and on at least one, close() must be called again. There are plans to address

this conundrum for the next major release of the POSIX.1 standard.

SEE ALSO
fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-10-10 2


