
CLONE(2) Linux Programmer’s Manual CLONE(2)

NAME
clone, __clone2, clone3 − create a child process

SYNOPSIS
/* Prototype for the glibc wrapper function */

#define _GNU_SOURCE

#include <sched.h>

int clone(int (* fn)(void *), void *stack, int flags, void *arg, ...

/* pid_t * parent_tid , void *tls, pid_t *child_tid */);

/* For the prototype of the raw clone() system call, see NOTES */

long clone3(struct clone_args *cl_args, size_t size);

Note: There is not yet a glibc wrapper for clone3(); see NOTES.

DESCRIPTION
These system calls create a new ("child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what pieces of execution

context are shared between the calling process and the child process. For example, using these system

calls, the caller can control whether or not the two processes share the virtual address space, the table of file

descriptors, and the table of signal handlers. These system calls also allow the new child process to be

placed in separate namespaces(7).

Note that in this manual page, "calling process" normally corresponds to "parent process". But see the de-

scriptions of CLONE_PARENT and CLONE_THREAD below.

This page describes the following interfaces:

* The glibc clone() wrapper function and the underlying system call on which it is based. The main text

describes the wrapper function; the differences for the raw system call are described toward the end of

this page.

* The newer clone3() system call.

In the remainder of this page, the terminology "the clone call" is used when noting details that apply to all

of these interfaces,

The clone() wrapper function

When the child process is created with the clone() wrapper function, it commences execution by calling the

function pointed to by the argument fn. (This differs from fork(2), where execution continues in the child

from the point of the fork(2) call.) The arg argument is passed as the argument of the function fn.

When the fn(arg) function returns, the child process terminates. The integer returned by fn is the exit sta-

tus for the child process. The child process may also terminate explicitly by calling exit(2) or after receiv-

ing a fatal signal.

The stack argument specifies the location of the stack used by the child process. Since the child and calling

process may share memory, it is not possible for the child process to execute in the same stack as the call-

ing process. The calling process must therefore set up memory space for the child stack and pass a pointer

to this space to clone(). Stacks grow downward on all processors that run Linux (except the HP PA proces-

sors), so stack usually points to the topmost address of the memory space set up for the child stack. Note

that clone() does not provide a means whereby the caller can inform the kernel of the size of the stack area.

The remaining arguments to clone() are discussed below.

clone3()

The clone3() system call provides a superset of the functionality of the older clone() interface. It also pro-

vides a number of API improvements, including: space for additional flags bits; cleaner separation in the

use of various arguments; and the ability to specify the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns 0 in the child process and re-

turns the PID of the child in the parent.

Linux 2019-11-19 1

CLONE(2) Linux Programmer’s Manual CLONE(2)

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {
u64 flags; /* Flags bit mask */
u64 pidfd; /* Where to store PID file descriptor

(pid_t *) */
u64 child_tid; /* Where to store child TID,

in child’s memory (pid_t *) */
u64 parent_tid; /* Where to store child TID,

in parent’s memory (int *) */
u64 exit_signal; /* Signal to deliver to parent on

child termination */
u64 stack; /* Pointer to lowest byte of stack */
u64 stack_size; /* Size of stack */
u64 tls; /* Location of new TLS */
u64 set_tid; /* Pointer to a pid_t array */
u64 set_tid_size; /* Number of elements in set_tid */

};

The size argument that is supplied to clone3() should be initialized to the size of this structure. (The exis-

tence of the size argument permits future extensions to the clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the lowest byte of the stack

area, and cl_args.stack_size, which specifies the size of the stack in bytes. In the case where the

CLONE_VM flag (see below) is specified, a stack must be explicitly allocated and specified. Otherwise,

these two fields can be specified as NULL and 0, which causes the child to use the same stack area as the

parent (in the child’s own virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments

Unlike the older clone() interface, where arguments are passed individually, in the newer clone3() interface

the arguments are packaged into the clone_args structure shown above. This structure allows for a superset

of the information passed via the clone() arguments.

The following table shows the equivalence between the arguments of clone() and the fields in the

clone_args argument supplied to clone3():

clone() clone3() Notes

cl_args field

flags & ˜0xff flags For most flags; details below

parent_tid pidfd See CLONE_PIDFD

child_tid child_tid See CLONE_CHILD_SETTID

parent_tid parent_tid See CLONE_PARENT_SETTID

flags & 0xff exit_signal

stack stack

--- stack_size

tls tls See CLONE_SETTLS

--- set_tid See below for details

--- set_tid_size

The child termination signal

When the child process terminates, a signal may be sent to the parent. The termination signal is specified in

the low byte of flags (clone()) or in cl_args.exit_signal (clone3()). If this signal is specified as anything

other than SIGCHLD, then the parent process must specify the __WALL or __WCLONE options when

waiting for the child with wait(2). If no signal (i.e., zero) is specified, then the parent process is not sig-

naled when the child terminates.

Linux 2019-11-19 2

CLONE(2) Linux Programmer’s Manual CLONE(2)

The set_tid array

By default, the kernel chooses the next sequential PID for the new process in each of the PID namespaces

where it is present. When creating a process with clone3(), the set_tid array (available since Linux 5.5) can

be used to select specific PIDs for the process in some or all of the PID namespaces where it is present. If

the PID of the newly created process should be set only for the current PID namespace or in the newly cre-

ated PID namespace (if flags contains CLONE_NEWPID) then the first element in the set_tid array has to

be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID namespaces, then the

set_tid array can have multiple entries. The first entry defines the PID in the most deeply nested PID name-

space and each of the following entries contains the PID in the corresponding ancestor PID namespace.

The number of PID namespaces in which a PID should be set is defined by set_tid_size which cannot be

larger than the number of currently nested PID namespaces.

To create a process with the following PIDs in a PID namespace hierarchy:

PID NS level Requested PID Notes

0 31496 Outermost PID namespace

1 42

2 7 Innermost PID namespace

Set the array to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid[2] = 31496;
set_tid_size = 3;

If only the PIDs in the two innermost PID namespaces need to be specified, set the array to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid_size = 2;

The PID in the PID namespaces outside the two innermost PID namespaces will be selected the same way

as any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN in all owning user namespaces of the target PID name-

spaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init process (i.e., a process

with PID 1) already exists in that namespace. Otherwise the PID entry for this PID namespace must be 1.

The flags mask

Both clone() and clone3() allow a flags bit mask that modifies their behavior and allows the caller to spec-

ify what is shared between the calling process and the child process. This bit mask—the flags argument of

clone() or the cl_args.flags field passed to clone3()—is referred to as the flags mask in the remainder of

this page.

The flags mask is specified as a bitwise-OR of zero or more of the constants listed below. Except as noted

below, these flags are available (and have the same effect) in both clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)

Clear (zero) the child thread ID at the location pointed to by child_tid (clone()) or

cl_args.child_tid (clone3()) in child memory when the child exits, and do a wakeup on the futex at

that address. The address involved may be changed by the set_tid_address(2) system call. This

is used by threading libraries.

CLONE_CHILD_SETTID (since Linux 2.5.49)

Store the child thread ID at the location pointed to by child_tid (clone()) or cl_args.child_tid

(clone3()) in the child’s memory. The store operation completes before the clone call returns con-

trol to user space in the child process. (Note that the store operation may not have completed be-

fore the clone call returns in the parent process, which will be relevant if the CLONE_VM flag is

Linux 2019-11-19 3

CLONE(2) Linux Programmer’s Manual CLONE(2)

also employed.)

CLONE_CLEAR_SIGHAND (since Linux 5.5)

By default, signal dispositions in the child thread are the same as in the parent. If this flag is speci-

fied, then all signals that are handled in the parent are reset to their default dispositions

(SIG_DFL) in the child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and disallowed.

CLONE_DETACHED (historical)

For a while (during the Linux 2.5 development series) there was a CLONE_DETACHED flag,

which caused the parent not to receive a signal when the child terminated. Ultimately, the effect of

this flag was subsumed under the CLONE_THREAD flag and by the time Linux 2.6.0 was re-

leased, this flag had no effect. Starting in Linux 2.6.2, the need to give this flag together with

CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). However, see the descrip-

tion of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)

If CLONE_FILES is set, the calling process and the child process share the same file descriptor

table. Any file descriptor created by the calling process or by the child process is also valid in the

other process. Similarly, if one of the processes closes a file descriptor, or changes its associated

flags (using the fcntl(2) F_SETFD operation), the other process is also affected. If a process shar-

ing a file descriptor table calls execve(2), its file descriptor table is duplicated (unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file descriptors opened in the

calling process at the time of the clone call. Subsequent operations that open or close file descrip-

tors, or change file descriptor flags, performed by either the calling process or the child process do

not affect the other process. Note, however, that the duplicated file descriptors in the child refer to

the same open file descriptions as the corresponding file descriptors in the calling process, and

thus share file offsets and file status flags (see open(2)).

CLONE_FS (since Linux 2.0)

If CLONE_FS is set, the caller and the child process share the same filesystem information. This

includes the root of the filesystem, the current working directory, and the umask. Any call to ch-

root(2), chdir(2), or umask(2) performed by the calling process or the child process also affects

the other process.

If CLONE_FS is not set, the child process works on a copy of the filesystem information of the

calling process at the time of the clone call. Calls to chroot(2), chdir(2), or umask(2) performed

later by one of the processes do not affect the other process.

CLONE_IO (since Linux 2.6.25)

If CLONE_IO is set, then the new process shares an I/O context with the calling process. If this

flag is not set, then (as with fork(2)) the new process has its own I/O context.

The I/O context is the I/O scope of the disk scheduler (i.e., what the I/O scheduler uses to model

scheduling of a process’s I/O). If processes share the same I/O context, they are treated as one by

the I/O scheduler. As a consequence, they get to share disk time. For some I/O schedulers, if two

processes share an I/O context, they will be allowed to interleave their disk access. If several

threads are doing I/O on behalf of the same process (aio_read(3), for instance), they should em-

ploy CLONE_IO to get better I/O performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a no-op.

CLONE_NEWCGROUP (since Linux 4.6)

Create the process in a new cgroup namespace. If this flag is not set, then (as with fork(2)) the

process is created in the same cgroup namespaces as the calling process.

For further information on cgroup namespaces, see cgroup_namespaces(7).

Linux 2019-11-19 4

CLONE(2) Linux Programmer’s Manual CLONE(2)

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWCGROUP.

CLONE_NEWIPC (since Linux 2.6.19)

If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If this flag is not

set, then (as with fork(2)), the process is created in the same IPC namespace as the calling

process.

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWIPC. This flag can’t

be specified in conjunction with CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)

(The implementation of this flag was completed only by about kernel version 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network namespace. If this flag is

not set, then (as with fork(2)) the process is created in the same network namespace as the calling

process.

For further information on network namespaces, see network_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)

If CLONE_NEWNS is set, the cloned child is started in a new mount namespace, initialized with

a copy of the namespace of the parent. If CLONE_NEWNS is not set, the child lives in the same

mount namespace as the parent.

For further information on mount namespaces, see namespaces(7) and mount_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWNS. It is not permit-

ted to specify both CLONE_NEWNS and CLONE_FS in the same clone call.

CLONE_NEWPID (since Linux 2.6.24)

If CLONE_NEWPID is set, then create the process in a new PID namespace. If this flag is not

set, then (as with fork(2)) the process is created in the same PID namespace as the calling process.

For further information on PID namespaces, see namespaces(7) and pid_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWPID. This flag can’t

be specified in conjunction with CLONE_THREAD or CLONE_PARENT.

CLONE_NEWUSER

(This flag first became meaningful for clone() in Linux 2.6.23, the current clone() semantics were

merged in Linux 3.5, and the final pieces to make the user namespaces completely usable were

merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace. If this flag is not

set, then (as with fork(2)) the process is created in the same user namespace as the calling process.

For further information on user namespaces, see namespaces(7) and user_namespaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have three capabilities:

CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID. Starting with Linux 3.8, no privileges

are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or CLONE_PARENT. For

security reasons, CLONE_NEWUSER cannot be specified in conjunction with CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)

If CLONE_NEWUTS is set, then create the process in a new UTS namespace, whose identifiers

are initialized by duplicating the identifiers from the UTS namespace of the calling process. If this

flag is not set, then (as with fork(2)) the process is created in the same UTS namespace as the call-

ing process.

Linux 2019-11-19 5

CLONE(2) Linux Programmer’s Manual CLONE(2)

For further information on UTS namespaces, see uts_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)

If CLONE_PARENT is set, then the parent of the new child (as returned by getppid(2)) will be

the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled when the child ter-

minates, so that if CLONE_PARENT is set, then the parent of the calling process, rather than the

calling process itself, will be signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init process (PID 1 in the

initial PID namespace) and init processes in other PID namespaces. This restriction prevents the

creation of multi-rooted process trees as well as the creation of unreapable zombies in the initial

PID namespace.

CLONE_PARENT_SETTID (since Linux 2.5.49)

Store the child thread ID at the location pointed to by parent_tid (clone()) or cl_args.child_tid

(clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48 there was a flag CLONE_SETTID

that did this.) The store operation completes before the clone call returns control to user space.

CLONE_PID (Linux 2.0 to 2.5.15)

If CLONE_PID is set, the child process is created with the same process ID as the calling

process. This is good for hacking the system, but otherwise of not much use. From Linux 2.3.21

onward, this flag could be specified only by the system boot process (PID 0). The flag disappeared

completely from the kernel sources in Linux 2.5.16. Subsequently, the kernel silently ignored this

bit if it was specified in the flags mask. Much later, the same bit was recycled for use as the

CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)

If this flag is specified, a PID file descriptor referring to the child process is allocated and placed at

a specified location in the parent’s memory. The close-on-exec flag is set on this new file descrip-

tor. PID file descriptors can be used for the purposes described in pidfd_open(2).

* When using clone3(), the PID file descriptor is placed at the location pointed to by

cl_args.pidfd .

* When using clone(), the PID file descriptor is placed at the location pointed to by parent_tid .

Since the parent_tid argument is used to return the PID file descriptor, CLONE_PIDFD can-

not be used with CLONE_PARENT_SETTID when calling clone().

It is currently not possible to use this flag together with CLONE_THREAD. This means that the

process identified by the PID file descriptor will always be a thread group leader.

If the obsolete CLONE_DETACHED flag is specified alongside CLONE_PIDFD when calling

clone(), an error is returned. An error also results if CLONE_DETACHED is specified when

calling clone3(). This error behavior ensures that the bit corresponding to CLONE_DETACHED

can be reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)

If CLONE_PTRACE is specified, and the calling process is being traced, then trace the child also

(see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)

The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On x86, tls is inter-

preted as a struct user_desc * (see set_thread_area(2)). On x86-64 it is the new value to be set

for the %fs base register (see the ARCH_SET_FS argument to arch_prctl(2)). On architectures

with a dedicated TLS register, it is the new value of that register.

Linux 2019-11-19 6

CLONE(2) Linux Programmer’s Manual CLONE(2)

Use of this flag requires detailed knowledge and generally it should not be used except in libraries

implementing threading.

CLONE_SIGHAND (since Linux 2.0)

If CLONE_SIGHAND is set, the calling process and the child process share the same table of

signal handlers. If the calling process or child process calls sigaction(2) to change the behavior

associated with a signal, the behavior is changed in the other process as well. However, the calling

process and child processes still have distinct signal masks and sets of pending signals. So, one of

them may block or unblock signals using sigprocmask(2) without affecting the other process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal handlers of the

calling process at the time of the clone call. Calls to sigaction(2) performed later by one of the

processes have no effect on the other process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if CLONE_SIGHAND is

specified

CLONE_STOPPED (since Linux 2.6.0)

If CLONE_STOPPED is set, then the child is initially stopped (as though it was sent a SIGSTOP

signal), and must be resumed by sending it a SIGCONT signal.

This flag was deprecated from Linux 2.6.25 onward, and was removed altogether in Linux 2.6.38.

Since then, the kernel silently ignores it without error. Starting with Linux 4.6, the same bit was

reused for the CLONE_NEWCGROUP flag.

CLONE_SYSVSEM (since Linux 2.5.10)

If CLONE_SYSVSEM is set, then the child and the calling process share a single list of System

V semaphore adjustment (semadj) values (see semop(2)). In this case, the shared list accumulates

semadj values across all processes sharing the list, and semaphore adjustments are performed only

when the last process that is sharing the list terminates (or ceases sharing the list using un-

share(2)). If this flag is not set, then the child has a separate semadj list that is initially empty.

CLONE_THREAD (since Linux 2.4.0)

If CLONE_THREAD is set, the child is placed in the same thread group as the calling process.

To make the remainder of the discussion of CLONE_THREAD more readable, the term "thread"

is used to refer to the processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads notion of a set of

threads that share a single PID. Internally, this shared PID is the so-called thread group identifier

(TGID) for the thread group. Since Linux 2.4, calls to getpid(2) return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique thread IDs (TID).

A new thread’s TID is available as the function result returned to the caller, and a thread can obtain

its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the resulting thread is

placed in a new thread group whose TGID is the same as the thread’s TID. This thread is the

leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as the process that

made the clone call (i.e., like CLONE_PARENT), so that calls to getppid(2) return the same

value for all of the threads in a thread group. When a CLONE_THREAD thread terminates, the

thread that created it is not sent a SIGCHLD (or other termination) signal; nor can the status of

such a thread be obtained using wait(2). (The thread is said to be detached .)

After all of the threads in a thread group terminate the parent process of the thread group is sent a

SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads other than the thread

group leader are terminated, and the new program is executed in the thread group leader.

If one of the threads in a thread group creates a child using fork(2), then any thread in the group

can wait(2) for that child.

Linux 2019-11-19 7

CLONE(2) Linux Programmer’s Manual CLONE(2)

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if

CLONE_THREAD is specified (and note that, since Linux 2.6.0, CLONE_SIGHAND also re-

quires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is delivered to a thread,

then it will affect (terminate, stop, continue, be ignored in) all members of the thread group.

Each thread has its own signal mask, as set by sigprocmask(2).

A signal may be process-directed or thread-directed. A process-directed signal is targeted at a

thread group (i.e., a TGID), and is delivered to an arbitrarily selected thread from among those that

are not blocking the signal. A signal may be process-directed because it was generated by the ker-

nel for reasons other than a hardware exception, or because it was sent using kill(2) or

sigqueue(3). A thread-directed signal is targeted at (i.e., delivered to) a specific thread. A signal

may be thread directed because it was sent using tgkill(2) or pthread_sigqueue(3), or because the

thread executed a machine language instruction that triggered a hardware exception (e.g., invalid

memory access triggering SIGSEGV or a floating-point exception triggering SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending process-directed sig-

nals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group has installed a han-

dler for the signal, then the handler will be invoked in exactly one, arbitrarily selected member of

the thread group that has not blocked the signal. If multiple threads in a group are waiting to ac-

cept the same signal using sigwaitinfo(2), the kernel will arbitrarily select one of these threads to

receive the signal.

CLONE_UNTRACED (since Linux 2.5.46)

If CLONE_UNTRACED is specified, then a tracing process cannot force CLONE_PTRACE on

this child process.

CLONE_VFORK (since Linux 2.2)

If CLONE_VFORK is set, the execution of the calling process is suspended until the child re-

leases its virtual memory resources via a call to execve(2) or _exit(2) (as with vfork(2)).

If CLONE_VFORK is not set, then both the calling process and the child are schedulable after

the call, and an application should not rely on execution occurring in any particular order.

CLONE_VM (since Linux 2.0)

If CLONE_VM is set, the calling process and the child process run in the same memory space. In

particular, memory writes performed by the calling process or by the child process are also visible

in the other process. Moreover, any memory mapping or unmapping performed with mmap(2) or

munmap(2) by the child or calling process also affects the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the memory space of the

calling process at the time of the clone call. Memory writes or file mappings/unmappings per-

formed by one of the processes do not affect the other, as with fork(2).

NOTES
One use of these systems calls is to implement threads: multiple flows of control in a program that run con-

currently in a shared address space.

Glibc does not provide a wrapper for clone3(); call it using syscall(2).

Note that the glibc clone() wrapper function makes some changes in the memory pointed to by stack

(changes required to set the stack up correctly for the child) before invoking the clone() system call. So, in

cases where clone() is used to recursively create children, do not use the buffer employed for the parent’s

stack as the stack of the child.

C library/kernel differences

The raw clone() system call corresponds more closely to fork(2) in that execution in the child continues

from the point of the call. As such, the fn and arg arguments of the clone() wrapper function are omitted.

Linux 2019-11-19 8

CLONE(2) Linux Programmer’s Manual CLONE(2)

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack argument (and

clone3() likewise allows cl_args.stack to be NULL). In this case, the child uses a duplicate of the parent’s

stack. (Copy-on-write semantics ensure that the child gets separate copies of stack pages when either

process modifies the stack.) In this case, for correct operation, the CLONE_VM option should not be

specified. (If the child shares the parent’s memory because of the use of the CLONE_VM flag, then no

copy-on-write duplication occurs and chaos is likely to result.)

The order of the arguments also differs in the raw system call, and there are variations in the arguments

across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh, tile, and alpha) is:

long clone(unsigned long flags, void *stack,

int *parent_tid, int *child_tid,

unsigned long tls);

On x86-32, and several other common architectures (including score, ARM, ARM 64, PA-RISC, arc,

Power PC, xtensa, and MIPS), the order of the last two arguments is reversed:

long clone(unsigned long flags, void *stack,

int *parent_tid, unsigned long tls,

int *child_tid);

On the cris and s390 architectures, the order of the first two arguments is reversed:

long clone(void *stack, unsigned long flags,

int *parent_tid, int *child_tid,

unsigned long tls);

On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,

int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,

unsigned long tls);

blackfin, m68k, and sparc

The argument-passing conventions on blackfin, m68k, and sparc are different from the descriptions above.

For details, see the kernel (and glibc) source.

ia64

On ia64, a different interface is used:

int __clone2(int (*fn)(void *),

void *stack_base, size_t stack_size,

int flags, void *arg, ...

/* pid_t *parent_tid, struct user_desc *tls,

pid_t *child_tid */);

The prototype shown above is for the glibc wrapper function; for the system call itself, the prototype can be

described as follows (it is identical to the clone() prototype on microblaze):

long clone2(unsigned long flags, void *stack_base,

int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,

unsigned long tls);

__clone2() operates in the same way as clone(), except that stack_base points to the lowest address of the

child’s stack area, and stack_size specifies the size of the stack pointed to by stack_base.

Linux 2.4 and earlier

In Linux 2.4 and earlier, clone() does not take arguments parent_tid , tls, and child_tid .

Linux 2019-11-19 9

CLONE(2) Linux Programmer’s Manual CLONE(2)

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execution. On failure, −1

is returned in the caller’s context, no child process will be created, and errno will be set appropriately.

ERRORS
EAGAIN

Too many processes are already running; see fork(2).

EEXIST (clone3() only)

One (or more) of the PIDs specified in set_tid already exists in the corresponding PID namespace.

EINVAL

Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified in the flags mask.

EINVAL

CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was not. (Since Linux

2.6.0.)

EINVAL

CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND was not. (Since

Linux 2.5.35.)

EINVAL

CLONE_THREAD was specified in the flags mask, but the current process previously called un-

share(2) with the CLONE_NEWPID flag or used setns(2) to reassociate itself with a PID name-

space.

EINVAL

Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)

Both CLONE_NEWUSER and CLONE_FS were specified in the flags mask.

EINVAL

Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags mask.

EINVAL

One (or both) of CLONE_NEWPID or CLONE_NEWUSER and one (or both) of

CLONE_THREAD or CLONE_PARENT were specified in the flags mask.

EINVAL (since Linux 2.6.32)

CLONE_PARENT was specified, and the caller is an init process.

EINVAL

Returned by the glibc clone() wrapper function when fn or stack is specified as NULL.

EINVAL

CLONE_NEWIPC was specified in the flags mask, but the kernel was not configured with the

CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL

CLONE_NEWNET was specified in the flags mask, but the kernel was not configured with the

CONFIG_NET_NS option.

EINVAL

CLONE_NEWPID was specified in the flags mask, but the kernel was not configured with the

CONFIG_PID_NS option.

EINVAL

CLONE_NEWUSER was specified in the flags mask, but the kernel was not configured with the

CONFIG_USER_NS option.

EINVAL

CLONE_NEWUTS was specified in the flags mask, but the kernel was not configured with the

CONFIG_UTS_NS option.

Linux 2019-11-19 10

CLONE(2) Linux Programmer’s Manual CLONE(2)

EINVAL

stack is not aligned to a suitable boundary for this architecture. For example, on aarch64, stack

must be a multiple of 16.

EINVAL (clone3() only)

CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)

CLONE_PIDFD was specified together with CLONE_DETACHED in the flags mask.

EINVAL

CLONE_PIDFD was specified together with CLONE_THREAD in the flags mask.

EINVAL (clone() only)

CLONE_PIDFD was specified together with CLONE_PARENT_SETTID in the flags mask.

EINVAL (clone3() only)

set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)

If one of the PIDs specified in set_tid was an inv alid PID.

EINVAL (AArch64 only, Linux 4.6 and earlier)

stack was not aligned to a 126-bit boundary.

ENOMEM

Cannot allocate sufficient memory to allocate a task structure for the child, or to copy those parts

of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)

CLONE_NEWPID was specified in the flags mask, but the limit on the nesting depth of PID

namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)

CLONE_NEWUSER was specified in the flags mask, and the call would cause the limit on the

number of nested user namespaces to be exceeded. See user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)

One of the values in the flags mask specified the creation of a new user namespace, but doing so

would have caused the limit defined by the corresponding file in /proc/sys/user to be exceeded.

For further details, see namespaces(7).

EPERM

CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET, CLONE_NEWNS,

CLONE_NEWPID, or CLONE_NEWUTS was specified by an unprivileged process (process

without CAP_SYS_ADMIN).

EPERM

CLONE_PID was specified by a process other than process 0. (This error occurs only on Linux

2.5.15 and earlier.)

EPERM

CLONE_NEWUSER was specified in the flags mask, but either the effective user ID or the ef-

fective group ID of the caller does not have a mapping in the parent namespace (see user_name-

spaces(7)).

EPERM (since Linux 3.9)

CLONE_NEWUSER was specified in the flags mask and the caller is in a chroot environment

(i.e., the caller’s root directory does not match the root directory of the mount namespace in which

it resides).

Linux 2019-11-19 11

CLONE(2) Linux Programmer’s Manual CLONE(2)

EPERM (clone3() only)

set_tid_size was greater than zero, and the caller lacks the CAP_SYS_ADMIN capability in one

or more of the user namespaces that own the corresponding PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)

System call was interrupted by a signal and will be restarted. (This can be seen only during a

trace.)

EUSERS (Linux 3.11 to Linux 4.8)

CLONE_NEWUSER was specified in the flags mask, and the limit on the number of nested user

namespaces would be exceeded. See the discussion of the ENOSPC error above.

VERSIONS
The clone3() system call first appeared in Linux 5.3.

CONFORMING TO
These system calls are Linux-specific and should not be used in programs intended to be portable.

NOTES
The kcmp(2) system call can be used to test whether two processes share various resources such as a file

descriptor table, System V semaphore undo operations, or a virtual address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of the new thread the

same as the parent of the calling process. However, for kernel versions 2.4.7 to 2.4.18 the

CLONE_THREAD flag implied the CLONE_PARENT flag (as in Linux 2.6.0 and later).

On i386, clone() should not be called through vsyscall, but directly through int $0x80.

BUGS
GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function for getpid(2) that per-

formed caching of PIDs. This caching relied on support in the glibc wrapper for clone(), but limitations in

the implementation meant that the cache was not up to date in some circumstances. In particular, if a signal

was delivered to the child immediately after the clone() call, then a call to getpid(2) in a handler for the sig-

nal could return the PID of the calling process ("the parent"), if the clone wrapper had not yet had a chance

to update the PID cache in the child. (This discussion ignores the case where the child was created using

CLONE_THREAD, when getpid(2) should return the same value in the child and in the process that

called clone(), since the caller and the child are in the same thread group. The stale-cache problem also

does not occur if the flags argument includes CLONE_VM.) To get the truth, it was sometimes necessary

to use code such as the following:

#include <syscall.h>

pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the PID caching feature

was removed in glibc 2.25.

EXAMPLE
The following program demonstrates the use of clone() to create a child process that executes in a separate

UTS namespace. The child changes the hostname in its UTS namespace. Both parent and child then dis-

play the system hostname, making it possible to see that the hostname differs in the UTS namespaces of the

parent and child. For an example of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s stack using mmap(2)

rather than malloc(3) for the following reasons:

* mmap(2) allocates a block of memory that starts on a page boundary and is a multiple of the page size.

This is useful if we want to establish a guard page (a page with protection PROT_NONE) at the end of

the stack using mprotect(2).

Linux 2019-11-19 12

CLONE(2) Linux Programmer’s Manual CLONE(2)

* We can specify the MAP_STACK flag to request a mapping that is suitable for a stack. For the mo-

ment, this flag is a no-op on Linux, but it exists and has effect on some other systems, so we should in-

clude it for portability.

Program source

#define _GNU_SOURCE
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sched.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

static int /* Start function for cloned child */
childFunc(void *arg)
{

struct utsname uts;

/* Change hostname in UTS namespace of child */

if (sethostname(arg, strlen(arg)) == −1)
errExit("sethostname");

/* Retrieve and display hostname */

if (uname(&uts) == −1)
errExit("uname");

printf("uts.nodename in child: %s\n", uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation−−for example, another
process might join the namespace. */

sleep(200);

return 0; /* Child terminates now */
}

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int
main(int argc, char *argv[])
{

char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;
struct utsname uts;

if (argc < 2) {
fprintf(stderr, "Usage: %s <child−hostname>\n", argv[0]);

Linux 2019-11-19 13

CLONE(2) Linux Programmer’s Manual CLONE(2)

exit(EXIT_SUCCESS);
}

/* Allocate memory to be used for the stack of the child */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, −1, 0);

if (stack == MAP_FAILED)
errExit("mmap");

stackTop = stack + STACK_SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc() */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);
if (pid == −1)

errExit("clone");
printf("clone() returned %ld\n", (long) pid);

/* Parent falls through to here */

sleep(1); /* Give child time to change its hostname */

/* Display hostname in parent's UTS namespace. This will be
different from hostname in child's UTS namespace. */

if (uname(&uts) == −1)
errExit("uname");

printf("uts.nodename in parent: %s\n", uts.nodename);

if (waitpid(pid, NULL, 0) == −1) /* Wait for child */
errExit("waitpid");

printf("child has terminated\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2), set_thread_area(2),

set_tid_address(2), setns(2), tkill(2), unshare(2), wait(2), capabilities(7), namespaces(7), pthreads(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-11-19 14

