
CLOCK_NANOSLEEP(2) Linux Programmer’s Manual CLOCK_NANOSLEEP(2)

NAME
clock_nanosleep − high-resolution sleep with specifiable clock

SYNOPSIS
#include <time.h>

int clock_nanosleep(clockid_t clock_id , int flags,

const struct timespec *request,

struct timespec *remain);

Link with −lrt (only for glibc versions before 2.17).

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():

_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an interval specified with

nanosecond precision. It differs in allowing the caller to select the clock against which the sleep interval is

to be measured, and in allowing the sleep interval to be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespec structures, defined as fol-

lows:

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds [0 .. 999999999] */

};

The clock_id argument specifies the clock against which the sleep interval is to be measured. This argu-

ment can have one of the following values:

CLOCK_REALTIME

A settable system-wide real-time clock.

CLOCK_MONOTONIC

A nonsettable, monotonically increasing clock that measures time since some unspeci-

fied point in the past that does not change after system startup.

CLOCK_PROCESS_CPUTIME_ID

A settable per-process clock that measures CPU time consumed by all threads in the

process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs returned by

clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in clock_id .

If flags is 0, then the value specified in request is interpreted as an interval relative to the current value of

the clock specified by clock_id .

If flags is TIMER_ABSTIME, then request is interpreted as an absolute time as measured by the clock,

clock_id . If request is less than or equal to the current value of the clock, then clock_nanosleep() returns

immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the time specified by

request has elapsed, or a signal is delivered that causes a signal handler to be called or that terminates the

process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error EINTR. In addition, if

remain is not NULL, and flags was not TIMER_ABSTIME, it returns the remaining unslept time in

remain. This value can then be used to call clock_nanosleep() again and complete a (relative) sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the call is interrupted

by a signal handler or encounters an error, then it returns one of the positive error number listed in

Linux 2017-09-15 1



CLOCK_NANOSLEEP(2) Linux Programmer’s Manual CLOCK_NANOSLEEP(2)

ERRORS.

ERRORS
EFAULT

request or remain specified an invalid address.

EINTR

The sleep was interrupted by a signal handler; see signal(7).

EINVAL

The value in the tv_nsec field was not in the range 0 to 999999999 or tv_sec was neg ative.

EINVAL

clock_id was inv alid. (CLOCK_THREAD_CPUTIME_ID is not a permitted value for

clock_id .)

VERSIONS
The clock_nanosleep() system call first appeared in Linux 2.6. Support is available in glibc since version

2.1.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
If the interval specified in request is not an exact multiple of the granularity underlying clock (see time(7)),

then the interval will be rounded up to the next multiple. Furthermore, after the sleep completes, there may

still be a delay before the CPU becomes free to once again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type described in nanosleep(2).

(Such problems are exacerbated in programs that try to restart a relative sleep that is repeatedly interrupted

by signals.) To perform a relative sleep that avoids these problems, call clock_gettime(2) for the desired

clock, add the desired interval to the returned time value, and then call clock_nanosleep() with the

TIMER_ABSTIME flag.

clock_nanosleep() is never restarted after being interrupted by a signal handler, reg ardless of the use of the

sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME. (An absolute sleep

can be restarted using the same request argument.)

POSIX.1 specifies that clock_nanosleep() has no effect on signals dispositions or the signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock via clock_settime(2),

the new clock value shall be used to determine the time at which a thread blocked on an absolute

clock_nanosleep() will wake up; if the new clock value falls past the end of the sleep interval, then the

clock_nanosleep() call will return immediately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via clock_settime(2) shall

have no effect on a thread that is blocked on a relative clock_nanosleep().

SEE ALSO
clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), usleep(3), time(7)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2017-09-15 2


