
BUNDLE−CACHE(1) BUNDLE−CACHE(1)

NAME
bundle−cache − Package your needed .gem files into your application

SYNOPSIS
bundle cache

DESCRIPTION
Copy all of the .gem files needed to run the application into the vendor/cache directory. In the future, when

running [bundle install(1)][bundle−install], use the gems in the cache in preference to the ones on

rubygems.org.

GIT AND PATH GEMS
The bundle cache command can also package :git and :path dependencies besides .gem files. This needs

to be explicitly enabled via the −−all option. Once used, the −−all option will be remembered.

SUPPORT FOR MULTIPLE PLATFORMS
When using gems that have different packages for different platforms, Bundler supports caching of gems

for other platforms where the Gemfile has been resolved (i.e. present in the lockfile) in vendor/cache. This

needs to be enabled via the −−all−platforms option. This setting will be remembered in your local bundler

configuration.

REMOTE FETCHING
By default, if you run bundle install(1)](bundle−install.1.html) after running bundle cache(1) bun-

dle−cache.1.html, bundler will still connect to rubygems.org to check whether a platform−specific gem ex-

ists for any of the gems in vendor/cache.

For instance, consider this Gemfile(5):

source "https://rubygems.org"

gem "nokogiri"

If you run bundle cache under C Ruby, bundler will retrieve the version of nokogiri for the "ruby" plat-

form. If you deploy to JRuby and run bundle install, bundler is forced to check to see whether a "java"

platformed nokogiri exists.

Even though the nokogiri gem for the Ruby platform is technically acceptable on JRuby, it has a C exten-

sion that does not run on JRuby. As a result, bundler will, by default, still connect to rubygems.org to

check whether it has a version of one of your gems more specific to your platform.

This problem is also not limited to the "java" platform. A similar (common) problem can happen when de-

veloping on Windows and deploying to Linux, or even when developing on OSX and deploying to Linux.

If you know for sure that the gems packaged in vendor/cache are appropriate for the platform you are on,

you can run bundle install −−local to skip checking for more appropriate gems, and use the ones in ven-

dor/cache.

One way to be sure that you have the right platformed versions of all your gems is to run bundle cache on

an identical machine and check in the gems. For instance, you can run bundle cache on an identical staging

box during your staging process, and check in the vendor/cache before deploying to production.

By default, bundle cache(1) bundle−cache.1.html fetches and also installs the gems to the default location.

To package the dependencies to vendor/cache without installing them to the local install location, you can

run bundle cache −−no−install.

December 2019 1


