
NAME
a64l, l64a − convert between long and base-64

SYNOPSIS
#include <stdlib.h>

long a64l(const char *str64);

char *l64a(long value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

a64l(), l64a():
_XOPEN_SOURCE >= 500

|| /* Glibc since 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _SVID_SOURCE

DESCRIPTION
These functions provide a conversion between 32-bit long integers and little-endian base-64 ASCII strings
(of length zero to six). If the string used as argument for a64l() has length greater than six, only the first six
bytes are used. If the type long has more than 32 bits, then l64a() uses only the low order 32 bits of value,
and a64l() sign-extends its 32-bit result.

The 64 digits in the base-64 system are:

'.' represents a 0
'/' represents a 1
0-9 represent 2-11
A-Z represent 12-37
a-z represent 38-63

So 123 = 59*64ˆ0 + 1*64ˆ1 = "v/".

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value

Thread safety MT-Unsafe race:l64al64a()

Thread safety MT-Safea64l()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
The value returned by l64a() may be a pointer to a static buffer, possibly overwritten by later calls.

The behavior of l64a() is undefined when value is negative. If value is zero, it returns an empty string.

These functions are broken in glibc before 2.2.5 (puts most significant digit first).

This is not the encoding used by uuencode(1).

SEE ALSO
uuencode(1), strtoul(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

1

