
_SYSCALL(2) Linux Programmer’s Manual _SYSCALL(2)

NAME
_syscall − invoking a system call without library support (OBSOLETE)

SYNOPSIS
#include <linux/unistd.h>

A _syscall macro

desired system call

DESCRIPTION
The important thing to know about a system call is its prototype. You need to know how many arguments,

their types, and the function return type. There are seven macros that make the actual call into the system

easier. They hav e the form:

_syscallX(type,name,type1,arg1,type2,arg2,...)

where

X is 0–6, which are the number of arguments taken by the system call

type is the return type of the system call

name is the name of the system call

typeN is the Nth argument’s type

argN is the name of the Nth argument

These macros create a function called name with the arguments you specify. Once you include the

_syscall() in your source file, you call the system call by name.

FILES
/usr/include/linux/unistd.h

CONFORMING TO
The use of these macros is Linux-specific, and deprecated.

NOTES
Starting around kernel 2.6.18, the _syscall macros were removed from header files supplied to user space.

Use syscall(2) instead. (Some architectures, notably ia64, never provided the _syscall macros; on those ar-

chitectures, syscall(2) was always required.)

The _syscall() macros do not produce a prototype. You may have to create one, especially for C++ users.

System calls are not required to return only positive or neg ative error codes. You need to read the source to

be sure how it will return errors. Usually, it is the negative of a standard error code, for example,

−EPERM . The _syscall() macros will return the result r of the system call when r is nonnegative, but will

return −1 and set the variable errno to −r when r is negative. For the error codes, see errno(3).

When defining a system call, the argument types must be passed by-value or by-pointer (for aggregates like

structs).

EXAMPLE
#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <linux/unistd.h> /* for _syscallX macros/related stuff */

#include <linux/kernel.h> /* for struct sysinfo */

_syscall1(int, sysinfo, struct sysinfo *, info);

int

main(void)

{

struct sysinfo s_info;

Linux 2019-03-06 1



_SYSCALL(2) Linux Programmer’s Manual _SYSCALL(2)

int error;

error = sysinfo(&s_info);

printf("code error = %d\n", error);

printf("Uptime = %lds\nLoad: 1 min %lu / 5 min %lu / 15 min %lu\n"

"RAM: total %lu / free %lu / shared %lu\n"

"Memory in buffers = %lu\nSwap: total %lu / free %lu\n"

"Number of processes = %d\n",

s_info.uptime, s_info.loads[0],

s_info.loads[1], s_info.loads[2],

s_info.totalram, s_info.freeram,

s_info.sharedram, s_info.bufferram,

s_info.totalswap, s_info.freeswap,

s_info.procs);

exit(EXIT_SUCCESS);

}

Sample output

code error = 0

uptime = 502034s

Load: 1 min 13376 / 5 min 5504 / 15 min 1152

RAM: total 15343616 / free 827392 / shared 8237056

Memory in buffers = 5066752

Swap: total 27881472 / free 24698880

Number of processes = 40

SEE ALSO
intro(2), syscall(2), errno(3)

COLOPHON
This page is part of release 5.05 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at

https://www.kernel.org/doc/man−pages/.

Linux 2019-03-06 2


