
Want(3pm) User Contributed Perl Documentation Want(3pm)

NAME
Want − A generalisation of "wantarray"

SYNOPSIS
use Want;
sub foo :lvalue {

if (want(qw'LVALUE ASSIGN')) {
print "We have been assigned ", want('ASSIGN');
lnoreturn;

}
elsif (want('LIST')) {
rreturn (1, 2, 3);

}
elsif (want('BOOL')) {
rreturn 0;

}
elsif (want(qw'SCALAR !REF')) {
rreturn 23;

}
elsif (want('HASH')) {
rreturn { foo => 17, bar => 23 };

}
return; # You have to put this at the end to keep the compiler happy

}

DESCRIPTION
This module generalises the mechanism of the wantarray function, allowing a function to determine in

some detail how its return value is going to be immediately used.

Top-level contexts:

The three kinds of top-level context are well known:

VOID

The return value is not being used in any way. It could be an entire statement like foo();, or the last

component of a compound statement which is itself in void context, such as $test || foo();n.

Be warned that the last statement of a subroutine will be in whatever context the subroutine was called

in, because the result is implicitly returned.

SCALAR

The return value is being treated as a scalar value of some sort:

my $x = foo();
$y += foo();
print "123" x foo();
print scalar foo();
warn foo()−>{23};
...etc...

LIST

The return value is treated as a list of values:

my @x = foo();
my ($x) = foo();
() = foo(); # even though the results are discarded
print foo();
bar(foo()); # unless the bar subroutine has a prototype
print @hash{foo()}; # (hash slice)
...etc...

perl v5.30.0 2019-10-18 1

Want(3pm) User Contributed Perl Documentation Want(3pm)

Lvalue subroutines:

The introduction of lvalue subroutines in Perl 5.6 has created a new type of contextual information, which

is independent of those listed above. When an lvalue subroutine is called, it can either be called in the

ordinary way (so that its result is treated as an ordinary value, an rvalue); or else it can be called so that its

result is considered updatable, an lvalue.

These rather arcane terms (lvalue and rvalue) are easier to remember if you know why they are so called. If

you consider a simple assignment statement left = right, then the left-hand side is an lvalue and the

right-hand side is an rvalue.

So (for lvalue subroutines only) there are two new types of context:

RVALUE

The caller is definitely not trying to assign to the result:

foo();
my $x = foo();
...etc...

If the sub is declared without the :lvalue attribute, then it will always be in RVALUE context.

If you need to return values from an lvalue subroutine in RVALUE context, you should use the

rreturn function rather than an ordinary return. Otherwise you’ll probably get a compile-time

error in perl 5.6.1 and later.

LVALUE

Either the caller is directly assigning to the result of the sub call:

foo() = $x;
foo() = (1, 1, 2, 3, 5, 8);

or the caller is making a reference to the result, which might be assigned to later:

my $ref = \(foo()); # Could now have: $$ref = 99;

Note that this example imposes LIST context on the sub call.
So we're taking a reference to the first element to be
returned _in list context_.
If we want to call the function in scalar context, we can
do it like this:
my $ref = \(scalar foo());

or else the result of the function call is being used as part of the argument list for another function call:

bar(foo()); # Will *always* call foo in lvalue context,
(provided that foo is an C<:lvalue> sub)
regardless of what bar actually does.

The reason for this last case is that bar might be a sub which modifies its arguments. They’re rare in

contemporary Perl code, but perfectly possible:

sub bar {
$_[0] = 23;

}

(This is really a throwback to Perl 4, which didn’t support explicit references.)

Assignment context:

The commonest use of lvalue subroutines is with the assignment statement:

size() = 12;
(list()) = (1..10);

A useful motto to remember when thinking about assignment statements is context comes from the left.

perl v5.30.0 2019-10-18 2

Want(3pm) User Contributed Perl Documentation Want(3pm)

Consider code like this:

my ($x, $y, $z);
sub list () :lvalue { ($x, $y, $z) }
list = (1, 2, 3);
print "\$x = $x; \$y = $y; \$z = $z\n";

This prints $x = ; $y = ; $z = 3, which may not be what you were expecting. The reason is that

the assignment is in scalar context, so the comma operator is in scalar context too, and discards all values

but the last. You can fix it by writing (list) = (1,2,3); instead.

If your lvalue subroutine is used on the left of an assignment statement, it’s in ASSIGN context. If ASSIGN

is the only argument to want(), then it returns a reference to an array of the value(s) of the right-hand

side.

In this case, you should return with the lnoreturn function, rather than an ordinary return.

This makes it very easy to write lvalue subroutines which do clever things:

use Want;
use strict;
sub backstr :lvalue {
if (want(qw'LVALUE ASSIGN')) {
my ($a) = want('ASSIGN');
$_[0] = reverse $a;
lnoreturn;

}
elsif (want('RVALUE')) {
rreturn scalar reverse $_[0];

}
else {
carp("Not in ASSIGN context");

}
return

}

print "foo −> ", backstr("foo"), "\n"; # foo −> oof
backstr(my $robin) = "nibor";
print "\$robin is now $robin\n"; # $robin is now robin

Notice that you need to put a (meaningless) return statement at the end of the function, otherwise you will

get the error Can’t modify non-lvalue subroutine call in lvalue subroutine return.

The only way to write that backstr function without using Want is to return a tied variable which is tied

to a custom class.

Reference context:

Sometimes in scalar context the caller is expecting a reference of some sort to be returned:

print foo()−>(); # CODE reference expected
print foo()−>{bar}; # HASH reference expected
print foo()−>[23]; # ARRAY reference expected
print ${foo()}; # SCALAR reference expected
print foo()−>bar(); # OBJECT reference expected

my $format = *{foo()}{FORMAT} # GLOB reference expected

You can check this using conditionals like if (want('CODE')). There is also a function wantref()
which returns one of the strings ‘‘CODE’’, ‘‘HASH’’, ‘‘ARRAY’’, ‘‘GLOB’’, ‘‘SCALAR’’ or ‘‘OBJECT’’; or the

empty string if a reference is not expected.

Because want('SCALAR') is already used to select ordinary scalar context, you have to use

perl v5.30.0 2019-10-18 3

Want(3pm) User Contributed Perl Documentation Want(3pm)

want('REFSCALAR') to find out if a SCALAR reference is expected. Or you could use want('REF')
eq 'SCALAR' of course.

Be warned that want('ARRAY') is a very different thing from wantarray().

Item count

Sometimes in list context the caller is expecting a particular number of items to be returned:

my ($x, $y) = foo(); # foo is expected to return two items

If you pass a number to the want function, then it will return true or false according to whether at least that

many items are wanted. So if we are in the definition of a sub which is being called as above, then:

want(1) returns true
want(2) returns true
want(3) returns false

Sometimes there is no limit to the number of items that might be used:

my @x = foo();
do_something_with(foo());

In this case, want(2), want(100), want(1E9) and so on will all return true; and so will

want('Infinity').

The howmany function can be used to find out how many items are wanted. If the context is scalar, then

want(1) returns true and howmany() returns 1. If you want to check whether your result is being

assigned to a singleton list, you can say if (want('LIST', 1)) { ... }.

Boolean context

Sometimes the caller is only interested in the truth or falsity of a function’s return value:

if (everything_is_okay()) {
Carry on

}

print (foo() ? "ok\n" : "not ok\n");

In the following example, all subroutine calls are in BOOL context:

my $x = ((foo() && !bar()) xor (baz() || quux()));

Boolean context, like the reference contexts above, is considered to be a subcontext of SCALAR.

FUNCTIONS
want(SPECIFIERS)

This is the primary interface to this module, and should suffice for most purposes. You pass it a list of

context specifiers, and the return value is true whenever all of the specifiers hold.

want('LVALUE', 'SCALAR'); # Are we in scalar lvalue context?
want('RVALUE', 3); # Are at least three rvalues wanted?
want('ARRAY'); # Is the return value used as an array ref?

You can also prefix a specifier with an exclamation mark to indicate that you don’t want it to be true

want(2, '!3'); # Caller wants exactly two items.
want(qw'REF !CODE !GLOB'); # Expecting a reference that

isn't a CODE or GLOB ref.
want(100, '!Infinity'); # Expecting at least 100 items,

but there is a limit.

If the REF keyword is the only parameter passed, then the type of reference will be returned. This is

just a synonym for the wantref function: it’s included because you might find it useful if you don’t

want to pollute your namespace by importing several functions, and to conform to Damian Conway’s

suggestion in RFC 21.

perl v5.30.0 2019-10-18 4

Want(3pm) User Contributed Perl Documentation Want(3pm)

Finally, the keyword COUNT can be used, provided that it’s the only keyword you pass. Mixing

COUNT with other keywords is an error. This is a synonym for the howmany function.

A full list of the permitted keyword is in the ARGUMENTS section below.

rreturn

Use this function instead of return from inside an lvalue subroutine when you know that you’re in

RVALUE context. If you try to use a normal return, you’ll get a compile-time error in Perl 5.6.1 and

above unless you return an lvalue. (Note: this is no longer true in Perl 5.16, where an ordinary return

will once again work.)

lnoreturn

Use this function instead of return from inside an lvalue subroutine when you’re in ASSIGN context

and you’ve used want('ASSIGN') to carry out the appropriate action.

If you use rreturn or lnoreturn, then you have to put a bare return; at the very end of your

lvalue subroutine, in order to stop the Perl compiler from complaining. Think of it as akin to the 1;
that you have to put at the end of a module. (Note: this is no longer true in Perl 5.16.)

howmany()

Returns the expectation count, i.e. the number of items expected. If the expectation count is undefined,

that indicates that an unlimited number of items might be used (e.g. the return value is being assigned

to an array). In void context the expectation count is zero, and in scalar context it is one.

The same as want('COUNT').

wantref()

Returns the type of reference which the caller is expecting, or the empty string if the caller isn’t

expecting a reference immediately.

The same as want('REF').

EXAMPLES
use Carp 'croak';
use Want 'howmany';
sub numbers {

my $count = howmany();
croak("Can't make an infinite list") if !defined($count);
return (1..$count);

}
my ($one, $two, $three) = numbers();

use Want 'want';
sub pi () {

if (want('ARRAY')) {
return [3, 1, 4, 1, 5, 9];

}
elsif (want('LIST')) {

return (3, 1, 4, 1, 5, 9);
}
else {

return 3;
}

}
print pi−>[2]; # prints 4
print ((pi)[3]); # prints 1

perl v5.30.0 2019-10-18 5

Want(3pm) User Contributed Perl Documentation Want(3pm)

ARGUMENTS
The permitted arguments to the want function are listed below. The list is structured so that sub-contexts

appear below the context that they are part of.

• VOID

• SCALAR

• REF

• REFSCALAR

• CODE

• HASH

• ARRAY

• GLOB

• OBJECT

• BOOL

• LIST

• COUNT

• <number>

• Infinity

• LVALUE

• ASSIGN

• RVALUE

EXPORT
The want and rreturn functions are exported by default. The wantref and/or howmany functions

can also be imported:

use Want qw'want howmany';

If you don’t import these functions, you must qualify their names as (e.g.) Want::wantref.

INTERFACE
This module is still under development, and the public interface may change in future versions. The want
function can now be reg arded as stable.

I’d be interested to know how you’re using this module.

SUBTLETIES
There are two different levels of BOOL context. Pure boolean context occurs in conditional expressions,

and the operands of the xor and !/not operators. Pure boolean context also propagates down through the

&& and || operators.

However, consider an expression like my $x = foo() && "yes". The subroutine is called in

pseudo−boolean context − its return value isn’t entirely ignored, because the undefined value, the empty

string and the integer 0 are all false.

At the moment want('BOOL') is true in either pure or pseudo boolean context. Let me know if this is a

problem.

BUGS
* Doesn't work from inside a tie−handler.

AUTHOR
Robin Houston, <robin@cpan.org>

Thanks to Damian Conway for encouragement and good suggestions, and Father Chrysostomos for a patch.

perl v5.30.0 2019-10-18 6

Want(3pm) User Contributed Perl Documentation Want(3pm)

SEE ALSO
• ‘‘wantarray’’ in perlfunc

• Perl6 RFC 21, by Damian Conway. http://dev.perl.org/rfc/21.html

COPYRIGHT
Copyright (c) 2001−2012, Robin Houston. All Rights Reserved. This module is free software. It may be

used, redistributed and/or modified under the same terms as Perl itself.

perl v5.30.0 2019-10-18 7

