
Serialiser(3pm) User Contributed Perl Documentation Serialiser(3pm)

NAME
Types::Serialiser − simple data types for common serialisation formats

SYNOPSIS
DESCRIPTION

This module provides some extra datatypes that are used by common serialisation formats such as JSON or

CBOR. The idea is to have a repository of simple/small constants and containers that can be shared by

different implementations so they become interoperable between each other.

SIMPLE SCALAR CONSTANTS
Simple scalar constants are values that are overloaded to act like simple Perl values, but have (class) type to

differentiate them from normal Perl scalars. This is necessary because these have different representations

in the serialisation formats.

BOOLEANS (Types::Serialiser::Boolean class)

This type has only two instances, true and false. A natural representation for these in Perl is 1 and 0, but

serialisation formats need to be able to differentiate between them and mere numbers.

$Types::Serialiser::true, Types::Serialiser::true

This value represents the ‘‘true’’ value. In most contexts is acts like the number 1. It is up to you

whether you use the variable form ($Types::Serialiser::true) or the constant form

(Types::Serialiser::true).

The constant is represented as a reference to a scalar containing 1 − implementations are allowed to

directly test for this.

$Types::Serialiser::false, Types::Serialiser::false

This value represents the ‘‘false’’ value. In most contexts is acts like the number 0. It is up to you

whether you use the variable form ($Types::Serialiser::false) or the constant form

(Types::Serialiser::false).

The constant is represented as a reference to a scalar containing 0 − implementations are allowed to

directly test for this.

$is_bool = Types::Serialiser::is_bool $value

Returns true iff the $value is either $Types::Serialiser::true or

$Types::Serialiser::false.

For example, you could differentiate between a perl true value and a

Types::Serialiser::true by using this:

$value && Types::Serialiser::is_bool $value

$is_true = Types::Serialiser::is_true $value

Returns true iff $value is $Types::Serialiser::true.

$is_false = Types::Serialiser::is_false $value

Returns false iff $value is $Types::Serialiser::false.

ERROR (Types::Serialiser::Error class)

This class has only a single instance, error. It is used to signal an encoding or decoding error. In CBOR

for example, and object that couldn’t be encoded will be represented by a CBOR undefined value, which is

represented by the error value in Perl.

$Types::Serialiser::error, Types::Serialiser::error

This value represents the ‘‘error’’ value. Accessing values of this type will throw an exception.

The constant is represented as a reference to a scalar containing undef − implementations are

allowed to directly test for this.

$is_error = Types::Serialiser::is_error $value

Returns false iff $value is $Types::Serialiser::error.

perl v5.18.1 2013-11-30 1

Serialiser(3pm) User Contributed Perl Documentation Serialiser(3pm)

NOTES FOR XS USERS
The recommended way to detect whether a scalar is one of these objects is to check whether the stash is the

Types::Serialiser::Boolean or Types::Serialiser::Error stash, and then follow the

scalar reference to see if it’s 1 (true), 0 (false) or undef (error).

While it is possible to use an isa test, directly comparing stash pointers is faster and guaranteed to work.

For historical reasons, the Types::Serialiser::Boolean stash is just an alias for

JSON::PP::Boolean. When printed, the classname with usually be JSON::PP::Boolean, but isa

tests and stash pointer comparison will normally work correctly (i.e. Types::Serialiser::true ISA

JSON::PP::Boolean, but also ISA Types::Serialiser::Boolean).

A GENERIC OBJECT SERIALIATION PROT OCOL
This section explains the object serialisation protocol used by CBOR::XS. It is meant to be generic enough

to support any kind of generic object serialiser.

This protocol is called ‘‘the Types::Serialiser object serialisation protocol’’.

ENCODING

When the encoder encounters an object that it cannot otherwise encode (for example, CBOR::XS can encode

a few special types itself, and will first attempt to use the special TO_CBOR serialisation protocol), it will

look up the FREEZE method on the object.

Note that the FREEZE method will normally be called during encoding, and MUST NOT change the data

structure that is being encoded in any way, or it might cause memory corruption or worse.

If it exists, it will call it with two arguments: the object to serialise, and a constant string that indicates the

name of the data model. For example CBOR::XS uses CBOR, and the JSON and JSON::XS modules (or any

other JSON serialiser), would use JSON as second argument.

The FREEZE method can then return zero or more values to identify the object instance. The serialiser is

then supposed to encode the class name and all of these return values (which must be encodable in the

format) using the relevant form for Perl objects. In CBOR for example, there is a registered tag number for

encoded perl objects.

The values that FREEZE returns must be serialisable with the serialiser that calls it. Therefore, it is

recommended to use simple types such as strings and numbers, and maybe array references and hashes

(basically, the JSON data model). You can always use a more complex format for a specific data model by

checking the second argument, the data model.

The ‘‘data model’’ is not the same as the ‘‘data format’’ − the data model indicates what types and kinds of

return values can be returned from FREEZE. For example, in CBOR it is permissible to return tagged CBOR

values, while JSON does not support these at all, so JSON would be a valid (but too limited) data model

name for CBOR::XS. similarly, a serialising format that supports more or less the same data model as

JSON could use JSON as data model without losing anything.

DECODING

When the decoder then encounters such an encoded perl object, it should look up the THAW method on the

stored classname, and invoke it with the classname, the constant string to identify the data model/data

format, and all the return values returned by FREEZE.

EXAMPLES

See the OBJECT SERIALISATION section in the CBOR::XS manpage for more details, an example

implementation, and code examples.

Here is an example FREEZE/THAW method pair:

sub My::Object::FREEZE {

my ($self, $model) = @_;

($self−>{type}, $self−>{id}, $self−>{variant})

}

perl v5.18.1 2013-11-30 2

Serialiser(3pm) User Contributed Perl Documentation Serialiser(3pm)

sub My::Object::THAW {

my ($class, $model, $type, $id, $variant) = @_;

$class−>new (type => $type, id => $id, variant => $variant)

}

BUGS
The use of overload makes this module much heavier than it should be (on my system, this module: 4kB

RSS, overload: 260kB RSS).

SEE ALSO
Currently, JSON::XS and CBOR::XS use these types.

AUTHOR
Marc Lehmann <schmorp@schmorp.de>

http://home.schmorp.de/

perl v5.18.1 2013-11-30 3

