
Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

NAME
Type::Utils − utility functions to make defining and using type constraints a little easier

SYNOPSIS
package Types::Mine;

use Type::Library −base;

use Type::Utils −all;

BEGIN { extends "Types::Standard" };

declare "AllCaps",

as "Str",

where { uc($_) eq $_ },

inline_as { my $varname = $_[1]; "uc($varname) eq $varname" };

coerce "AllCaps",

from "Str", via { uc($_) };

STATUS
This module is covered by the Type-Tiny stability policy.

DESCRIPTION
This module provides utility functions to make defining and using type constraints a little easier.

Type declaration functions

Many of the following are similar to the similarly named functions described in
Moose::Util::TypeConstraints.

declare $name, %options

declare %options

Declare a named or anonymous type constraint. Use as and where to specify the parent type (if any)
and (possibly) refine its definition.

declare EvenInt, as Int, where { $_ % 2 == 0 };

my $EvenInt = declare as Int, where { $_ % 2 == 0 };

NOTE: If the caller package inherits from Type::Library then any non-anonymous types declared in the
package will be automatically installed into the library.

Hidden gem: if you’re inheriting from a type constraint that includes some coercions, you can include
coercion => 1 in the %options hash to inherit the coercions.

subtype $name, %options

subtype %options

Declare a named or anonymous type constraint which is descended from an existing type constraint.
Use as and where to specify the parent type and refine its definition.

Actually, you should use declare instead; this is just an alias.

This function is not exported by default.

type $name, %options

type %options

Declare a named or anonymous type constraint which is not descended from an existing type
constraint. Use where to provide a coderef that constrains values.

Actually, you should use declare instead; this is just an alias.

This function is not exported by default.

perl v5.30.0 2019-12-28 1

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

as $parent

Used with declare to specify a parent type constraint:

declare EvenInt, as Int, where { $_ % 2 == 0 };

where { BLOCK }

Used with declare to provide the constraint coderef:

declare EvenInt, as Int, where { $_ % 2 == 0 };

The coderef operates on $_, which is the value being tested.

message { BLOCK }

Generate a custom error message when a value fails validation.

declare EvenInt,

as Int,

where { $_ % 2 == 0 },

message {

Int−>validate($_) or "$_ is not divisible by two";

};

Without a custom message, the messages generated by Type::Tiny are along the lines of Value ‘‘33’’

did not pass type constraint ‘‘EvenInt’’, which is usually reasonable.

inline_as { BLOCK }

Generate a string of Perl code that can be used to inline the type check into other functions. If your
type check is being used within a Moose or Moo constructor or accessor methods, or used by
Type::Params, this can lead to significant performance improvements.

declare EvenInt,

as Int,

where { $_ % 2 == 0 },

inline_as {

my ($constraint, $varname) = @_;

my $perlcode =

$constraint−>parent−>inline_check($varname)

. "&& ($varname % 2 == 0)";

return $perlcode;

};

warn EvenInt−>inline_check('$xxx'); # demonstration

Your inline_as block can return a list, in which case these will be smushed together with ‘‘&&’’.
The first item on the list may be undef, in which case the undef will be replaced by the inlined parent
type constraint. (And will throw an exception if there is no parent.)

declare EvenInt,

as Int,

where { $_ % 2 == 0 },

inline_as {

return (undef, "($_ % 2 == 0)");

};

class_type $name, { class => $package, %options }

class_type { class => $package, %options }

class_type $name

Shortcut for declaring a Type::Tiny::Class type constraint.

If $package is omitted, is assumed to be the same as $name. If $name contains ‘‘::’’ (which would
be an invalid name as far as Type::Tiny is concerned), this will be removed.

perl v5.30.0 2019-12-28 2

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

So for example, class_type("Foo::Bar") declares a Type::Tiny::Class type constraint named
‘‘FooBar’’ which constrains values to objects blessed into the ‘‘Foo::Bar’’ package.

role_type $name, { role => $package, %options }

role_type { role => $package, %options }

role_type $name

Shortcut for declaring a Type::Tiny::Role type constraint.

If $package is omitted, is assumed to be the same as $name. If $name contains ‘‘::’’ (which would
be an invalid name as far as Type::Tiny is concerned), this will be removed.

duck_type $name, \@methods

duck_type \@methods

Shortcut for declaring a Type::Tiny::Duck type constraint.

union $name, \@constraints

union \@constraints

Shortcut for declaring a Type::Tiny::Union type constraint.

enum $name, \@values

enum \@values

Shortcut for declaring a Type::Tiny::Enum type constraint.

intersection $name, \@constraints

intersection \@constraints

Shortcut for declaring a Type::Tiny::Intersection type constraint.

Coercion declaration functions

Many of the following are similar to the similarly named functions described in
Moose::Util::TypeConstraints.

coerce $target, @coercions

Add coercions to the target type constraint. The list of coercions is a list of type constraint, conversion
code pairs. Conversion code can be either a string of Perl code or a coderef; in either case the value to
be converted is $_.

from $source

Sugar to specify a type constraint in a list of coercions:

coerce EvenInt, from Int, via { $_ * 2 }; # As a coderef...

coerce EvenInt, from Int, q { $_ * 2 }; # or as a string!

via { BLOCK }

Sugar to specify a coderef in a list of coercions.

declare_coercion $name, \%opts, $type1, $code1, ...

declare_coercion \%opts, $type1, $code1, ...

Declares a coercion that is not explicitly attached to any type in the library. For example:

declare_coercion "ArrayRefFromAny", from "Any", via { [$_] };

This coercion will be exportable from the library as a Type::Coercion object, but the ArrayRef type
exported by the library won’t automatically use it.

Coercions declared this way are immutable (frozen).

to_type $type

Used with declare_coercion to declare the target type constraint for a coercion, but still without
explicitly attaching the coercion to the type constraint:

declare_coercion "ArrayRefFromAny",

to_type "ArrayRef",

from "Any", via { [$_] };

You should pretty much always use this when declaring an unattached coercion because it’s

perl v5.30.0 2019-12-28 3

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

exceedingly useful for a type coercion to know what it will coerce to − this allows it to skip coercion
when no coercion is needed (e.g. avoiding coercing [] to [[]]) and allows assert_coerce to
work properly.

Type library management

extends @libraries

Indicates that this type library extends other type libraries, importing their type constraints.

Should usually be executed in a BEGIN block.

This is not exported by default because it’s not fun to export it to Moo, Moose or Mouse classes! use
Type::Utils −all can be used to import it into your type library.

Other

match_on_type $value => ($type => \&action, ..., \&default?)

Something like a switch/case or given/when construct. Dispatches along different code paths
depending on the type of the incoming value. Example blatantly stolen from the Moose
documentation:

sub to_json

{

my $value = shift;

return match_on_type $value => (

HashRef() => sub {

my $hash = shift;

'{ '

. (

join ", " =>

map { '"' . $_ . '" : ' . to_json($hash−>{$_}) }

sort keys %$hash

) . ' }';

},

ArrayRef() => sub {

my $array = shift;

'['.(join ", " => map { to_json($_) } @$array).']';

},

Num() => q {$_},

Str() => q { '"' . $_ . '"' },

Undef() => q {'null'},

=> sub { die "$_ is not acceptable json type" },

);

}

Note that unlike Moose, code can be specified as a string instead of a coderef. (e.g. for Num, Str and
Undef above.)

For improved performance, try compile_match_on_type.

This function is not exported by default.

my $coderef = compile_match_on_type($type => \&action, ..., \&default?)

Compile a match_on_type block into a coderef. The following JSON converter is about two orders
of magnitude faster than the previous example:

perl v5.30.0 2019-12-28 4

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

sub to_json;

*to_json = compile_match_on_type(

HashRef() => sub {

my $hash = shift;

'{ '

. (

join ", " =>

map { '"' . $_ . '" : ' . to_json($hash−>{$_}) }

sort keys %$hash

) . ' }';

},

ArrayRef() => sub {

my $array = shift;

'['.(join ", " => map { to_json($_) } @$array).']';

},

Num() => q {$_},

Str() => q { '"' . $_ . '"' },

Undef() => q {'null'},

=> sub { die "$_ is not acceptable json type" },

);

Remember to store the coderef somewhere fairly permanent so that you don’t compile it over and over.
state variables (in Perl >= 5.10) are good for this. (Same sort of idea as Type::Params.)

This function is not exported by default.

my $coderef = classifier(@types)

Returns a coderef that can be used to classify values according to their type constraint. The coderef,
when passed a value, returns a type constraint which the value satisfies.

use feature qw(say);

use Type::Utils qw(classifier);

use Types::Standard qw(Int Num Str Any);

my $classifier = classifier(Str, Int, Num, Any);

say $classifier−>("42")−>name; # Int

say $classifier−>("4.2")−>name; # Num

say $classifier−>([])−>name; # Any

Note that, for example, ‘‘42’’ satisfies Int, but it would satisfy the type constraints Num, Str, and Any
as well. In this case, the classifier has picked the most specific type constraint that ‘‘42’’ satisfies.

If no type constraint is satisfied by the value, then the classifier will return undef.

dwim_type($string, %options)

Given a string like ‘‘ArrayRef[Int|CodeRef]’’, turns it into a type constraint object, hopefully doing
what you mean.

It uses the syntax of Type::Parser. Firstly the Type::Registry for the caller package is consulted; if that
doesn’t hav e a match, Types::Standard is consulted for standard type constraint names.

If none of the above yields a type constraint, and the caller class is a Moose-based class, then
dwim_type attempts to look the type constraint up in the Moose type registry. If it’s a Mouse-based
class, then the Mouse type registry is used instead.

If no type constraint can be found via these normal methods, several fallbacks are available:

perl v5.30.0 2019-12-28 5

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

lookup_via_moose

Lookup in Moose registry even if caller is non-Moose class.

lookup_via_mouse

Lookup in Mouse registry even if caller is non-Mouse class.

make_class_type

Create a new Type::Tiny::Class constraint.

make_role_type

Create a new Type::Tiny::Role constraint.

You can alter which should be attempted, and in which order, by passing an option to dwim_type:

my $type = Type::Utils::dwim_type(

"ArrayRef[Int]",

fallback => ["lookup_via_mouse" , "make_role_type"],

);

For historical reasons, by default the fallbacks attempted are:

lookup_via_moose, lookup_via_mouse, make_class_type

You may set fallback to an empty arrayref to avoid using any of these fallbacks.

You can specify an alternative for the caller using the for option.

my $type = dwim_type("ArrayRef", for => "Moose::Object");

While it’s probably better overall to use the proper Type::Registry interface for resolving type
constraint strings, this function often does what you want.

It should never die if it fails to find a type constraint (but may die if the type constraint string is
syntactically malformed), preferring to return undef.

This function is not exported by default.

english_list(\$conjunction, @items)

Joins the items with commas, placing a conjunction before the final item. The conjunction is optional,
defaulting to ‘‘and’’.

english_list(qw/foo bar baz/); # "foo, bar, and baz"

english_list(\"or", qw/quux quuux/); # "quux or quuux"

This function is not exported by default.

EXPORT
By default, all of the functions documented above are exported, except subtype and type (prefer
declare instead), extends, dwim_type, match_on_type/compile_match_on_type,
classifier, and english_list.

This module uses Exporter::Tiny; see the documentation of that module for tips and tricks importing from
Type::Utils.

BUGS
Please report any bugs to <http://rt.cpan.org/Dist/Display.html?Queue=Type−Tiny>.

SEE ALSO
Type::Tiny::Manual.

Type::Tiny, Type::Library, Types::Standard, Type::Coercion.

Type::Tiny::Class, Type::Tiny::Role, Type::Tiny::Duck, Type::Tiny::Enum, Type::Tiny::Union.

Moose::Util::TypeConstraints, Mouse::Util::TypeConstraints.

perl v5.30.0 2019-12-28 6

Type::Utils(3pm) User Contributed Perl Documentation Type::Utils(3pm)

AUTHOR
Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE
This software is copyright (c) 2013−2014, 2017−2019 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5
programming language system itself.

DISCLAIMER OF WARRANTIES
THIS PACKAGE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

perl v5.30.0 2019-12-28 7

