
Type::Tiny::Manual::UsingWithOther(3pm)User Contributed Perl DocumentationType::Tiny::Manual::UsingWithOther(3pm)

NAME
Type::Tiny::Manual::UsingWithOther − using Type::Tiny with Class::InsideOut, Params::Check, and

Object::Accessor.

MANUAL
The antlers crew aren’t the only object-oriented programming toolkits in Perl town. Although Type::Tiny

might have been built with Moose, Mouse, and Moo in mind, it can be used with other toolkits.

These toolkits are... well... hmm... okay... they exist.

If you are starting a new project, there’s very little reason not to use Class::Tiny, Moo, or Moose. So you’re

probably okay to skip this part of the fine manual and go straight to

Type::Tiny::Manual::UsingWithTestMore.

Class::InsideOut

You want Class::InsideOut 1.13 or above, which has support for blessed and overloaded objects (including

Type::Tiny type constraints) for the get_hook and set_hook options.

package Person {

use Class::InsideOut qw(public);

use Types::Standard qw(Str Int);

use Types::Common::Numeric qw(PositiveInt);

use Type::Params qw(compile);

Type checks are really easy.

Just supply the type as a set hook.

public name => my %_name, {

set_hook => Str,

};

Define a type that silently coerces negative values

to positive. It's silly, but it works as an example!

my $Years = PositiveInt−>plus_coercions(Int, q{ abs($_) });

Coercions are more annoying, but possible.

public age => my %_age, {

set_hook => sub { $_ = $Years−>assert_coerce($_) },

};

Parameter checking for methods is as expected.

sub get_older {

state $check = compile($Years);

my $self = shift;

my ($years) = $check−>(@_);

$self−>_set_age($self−>age + $years);

}

}

Params::Check and Object::Accessor

The Params::Check allow() function, the allow option for the Params::Check check() function, and

the input validation mechanism for Object::Accessor all work in the same way, which is basically a limited

pure-Perl implementation of the smart match operator. While this doesn’t directly support Type::Tiny

constraints, it does support coderefs. You can use Type::Tiny’s compiled_check method to obtain a

suitable coderef.

Param::Check example:

perl v5.30.0 2019-12-28 1

Type::Tiny::Manual::UsingWithOther(3pm)User Contributed Perl DocumentationType::Tiny::Manual::UsingWithOther(3pm)

my $tmpl = {

name => { allow => Str−>compiled_check },

age => { allow => Int−>compiled_check },

};

check($tmpl, { name => "Bob", age => 32 })

or die Params::Check::last_error();

Object::Accessor example:

my $obj = Object::Accessor−>new;

$obj−>mk_accessors(

{ name => Str−>compiled_check },

{ age => Int−>compiled_check },

);

Caveat: Object::Accessor doesn’t die when a value fails to meet its type constraint; instead it outputs a

warning to STDERR. This behaviour can be changed by setting $Object::Accessor::FATAL = 1.

Class::Struct

This is proof-of-concept of how Type::Tiny can be used to constrain attributes for Class::Struct. It’s

probably not a good idea to use this in production as it slows down UNIVERSAL::isa globally.

use Types::Standard −types;

use Class::Struct;

{

my %MAP;

my $orig_isa = \&UNIVERSAL::isa;

*UNIVERSAL::isa = sub {

return $MAP{$1}−>check($_[0])

if $_[1] =˜ /ˆCLASSSTRUCT::TYPETINY::(.+)$/ && exists $MAP{$1};

goto $orig;

};

my $orig_dn = \&Type::Tiny::display_name;

*Type::Tiny::display_name = sub {

if (caller(1) eq 'Class::Struct') {

$MAP{$_[0]{uniq}} = $_[0];

return "CLASSSTRUCT::TYPETINY::".$_[0]{uniq};

}

goto $orig_dn;

};

}

struct Person => [name => Str, age => Int];

my $bob = Person−>new(

name => "Bob",

age => 21,

);

$bob−>name("Robert"); # okay

$bob−>name([]); # dies

NEXT STEPS
Here’s your next step:

• Type::Tiny::Manual::UsingWithTestMore

Type::Tiny for test suites.

perl v5.30.0 2019-12-28 2

Type::Tiny::Manual::UsingWithOther(3pm)User Contributed Perl DocumentationType::Tiny::Manual::UsingWithOther(3pm)

AUTHOR
Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE
This software is copyright (c) 2013−2014, 2017−2019 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

DISCLAIMER OF WARRANTIES
THIS PACKAGE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

perl v5.30.0 2019-12-28 3

