
Type::Tiny::Manual(3pm) User Contributed Perl Documentation Type::Tiny::Manual(3pm)

NAME

Type::Tiny::Manual − an overview of Type::Tiny

SYNOPSIS

Type::Tiny is a small Perl <http://www.perl.org/> class for writing type constraints, inspired by Moose’s

type constraint API and MooseX::Types. It has only one non-core dependency (and even that is simply a

module that was previously distributed as part of Type::Tiny but has since been spun off), and can be used

with Moose, Mouse, or Moo (or none of the above).

Type::Tiny is used by over 800 Perl distributions on the CPAN (Comprehensive Perl Archive Network) and

can be considered a stable and mature framework for efficiently and reliably enforcing data types.

Type::Tiny is bundled with Type::Library a framework for organizing type constraints into collections. Also

bundled is Types::Standard, a Moose-inspired library of useful type constraints. Type::Params is also

provided, to allow very fast checking and coercion of function and method parameters.

The following example gives you an idea of some of the features of these modules. If you don’t understand

it all, that’s fine; that’s what the rest of the manual is for. Although the example uses Moo, the use Moo

could be changed to use Moose or use Mouse and it would still work.

use v5.12;

use strict;

use warnings;

package Horse {

use Moo;

use Types::Standard qw(Str Int Enum ArrayRef InstanceOf);

use Type::Params qw(compile);

use namespace::autoclean;

has name => (

is => 'ro',

isa => Str,

required => 1,

);

has gender => (

is => 'ro',

isa => Enum[qw(f m)],

);

has age => (

is => 'rw',

isa => Int−>where('$_ >= 0'),

);

has children => (

is => 'ro',

isa => ArrayRef[InstanceOf['Horse']],

default => sub { return [] },

);

sub add_child {

method signature

state $check = compile(InstanceOf['Horse'], InstanceOf['Horse']);

my ($self, $child) = $check−>(@_); # unpack @_

push @{ $self−>children }, $child;

return $self;

perl v5.30.0 2019-12-28 1

Type::Tiny::Manual(3pm) User Contributed Perl Documentation Type::Tiny::Manual(3pm)

}

}

package main;

my $boldruler = Horse−>new(

name => "Bold Ruler",

gender => 'm',

age => 16,

);

my $secretariat = Horse−>new(

name => "Secretariat",

gender => 'm',

age => 0,

);

$boldruler−>add_child($secretariat);

use Types::Standard qw(is_Object assert_Object);

is_Object will return a boolean

#

if (is_Object($boldruler)) {

say $boldruler−>name;

}

assert_Object will return $secretariat or die

#

say assert_Object($secretariat)−>name;

MANUAL

Even if you are using Type::Tiny with other object-oriented programming toolkits (such as Moose or

Mouse), you should start with the Moo sections of the manual. Most of the information is directly

transferrable and the Moose and Mouse sections of the manual list the minor differences between using

Type::Tiny with Moo and with them.

In general, this manual assumes you use Perl 5.12 or above and may use examples that do not work on

older versions of Perl. Type::Tiny does work on earlier versions of Perl, but not all the examples and

features in the manual will run without adjustment. (For instance, you may need to replace state

variables with lexical variables, avoid the package NAME { BLOCK } syntax, etc.)

• Type::Tiny::Manual::Installation

How to install Type::Tiny. If Type::Tiny is already installed, you can skip this.

• Type::Tiny::Manual::UsingWithMoo

Basic use of Type::Tiny with Moo, including attribute type constraints, parameterized type constraints,

coercions, and method parameter checking.

• Type::Tiny::Manual::UsingWithMoo2

Advanced use of Type::Tiny with Moo, including unions and intersections, stringifies_to,

numifies_to, with_attribute_values, and where.

• Type::Tiny::Manual::UsingWithMoo3

There’s more than one way to do it! Alternative ways of using Type::Tiny, including type registries,

exported functions, and dwim_type.

perl v5.30.0 2019-12-28 2

Type::Tiny::Manual(3pm) User Contributed Perl Documentation Type::Tiny::Manual(3pm)

• Type::Tiny::Manual::Libraries

Defining your own type libraries, including extending existing libraries, defining new types, adding

coercions, defining parameterizable types, and the declarative style.

• Type::Tiny::Manual::UsingWithMoose

How to use Type::Tiny with Moose, including the advantages of Type::Tiny over built-in type

constraints, and Moose-specific features.

• Type::Tiny::Manual::UsingWithMouse

How to use Type::Tiny with Mouse, including the advantages of Type::Tiny over built-in type

constraints, and Mouse-specific features.

• Type::Tiny::Manual::UsingWithClassTiny

Including how to Type::Tiny in your object’s BUILD method, and third-party shims between

Type::Tiny and Class::Tiny.

• Type::Tiny::Manual::UsingWithOther

Using Type::Tiny with Class::InsideOut, Params::Check, and Object::Accessor.

• Type::Tiny::Manual::UsingWithTestMore

Type::Tiny for test suites.

• Type::Tiny::Manual::Params

Advanced information on Type::Params, and using Type::Tiny with other signature modules like

Function::Parameters and Kavorka.

• Type::Tiny::Manual::NonOO

Type::Tiny in non-object-oriented code.

• Type::Tiny::Manual::Optimization

Squeeze the most out of your CPU.

• Type::Tiny::Manual::Coercions

Advanced information on coercions.

• Type::Tiny::Manual::AllTypes

An alphabetical list of all type constraints bundled with Type::Tiny.

• Type::Tiny::Manual::Policies

Policies related to Type::Tiny dev elopment.

• Type::Tiny::Manual::Contributing

Contributing to Type::Tiny dev elopment.

BUGS

Please report any bugs to <http://rt.cpan.org/Dist/Display.html?Queue=Type−Tiny>.

SEE ALSO

The Type::Tiny homepage <http://typetiny.toby.ink/>.

AUTHOR

Toby Inkster <tobyink@cpan.org>.

COPYRIGHT AND LICENCE

This software is copyright (c) 2013−2014, 2017−2019 by Toby Inkster.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

perl v5.30.0 2019-12-28 3

Type::Tiny::Manual(3pm) User Contributed Perl Documentation Type::Tiny::Manual(3pm)

DISCLAIMER OF WARRANTIES

THIS PACKAGE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

perl v5.30.0 2019-12-28 4

