
Tie::IxHash(3pm) User Contributed Perl Documentation Tie::IxHash(3pm)

NAME
Tie::IxHash − ordered associative arrays for Perl

SYNOPSIS
simple usage

use Tie::IxHash;

tie HASHVARIABLE, 'Tie::IxHash' [, LIST];

OO interface with more powerful features

use Tie::IxHash;

TIEOBJECT = Tie::IxHash−>new([LIST]);

TIEOBJECT−>Splice(OFFSET [, LENGTH [, LIST]]);

TIEOBJECT−>Push(LIST);

TIEOBJECT−>Pop;

TIEOBJECT−>Shift;

TIEOBJECT−>Unshift(LIST);

TIEOBJECT−>Keys([LIST]);

TIEOBJECT−>Values([LIST]);

TIEOBJECT−>Indices(LIST);

TIEOBJECT−>Delete([LIST]);

TIEOBJECT−>Replace(OFFSET, VALUE, [KEY]);

TIEOBJECT−>Reorder(LIST);

TIEOBJECT−>SortByKey;

TIEOBJECT−>SortByValue;

TIEOBJECT−>Length;

DESCRIPTION
This Perl module implements Perl hashes that preserve the order in which the hash elements were added.

The order is not affected when values corresponding to existing keys in the IxHash are changed. The

elements can also be set to any arbitrary supplied order. The familiar perl array operations can also be

performed on the IxHash.

Standard TIEHASH Interface

The standard TIEHASH mechanism is available. This interface is recommended for simple uses, since the

usage is exactly the same as regular Perl hashes after the tie is declared.

Object Interface

This module also provides an extended object-oriented interface that can be used for more powerful

operations with the IxHash. The following methods are available:

FETCH, STORE, DELETE, EXISTS

These standard TIEHASH methods mandated by Perl can be used directly. See the tie entry in

perlfunc (1) for details.

Push, Pop, Shift, Unshift, Splice

These additional methods resembling Perl functions are available for operating on key-value pairs

in the IxHash. The behavior is the same as the corresponding perl functions, except when a

supplied hash key already exists in the hash. In that case, the existing value is updated but its

order is not affected. To unconditionally alter the order of a supplied key-value pair, first

DELETE the IxHash element.

Ke ys Returns an array of IxHash element keys corresponding to the list of supplied indices. Returns an

array of all the keys if called without arguments. Note the return value is mostly only useful

when used in a list context (since perl will convert it to the number of elements in the array when

used in a scalar context, and that may not be very useful).

If a single argument is given, returns the single key corresponding to the index. This is usable in

either scalar or list context.

perl v5.20.2 2015-06-06 1

Tie::IxHash(3pm) User Contributed Perl Documentation Tie::IxHash(3pm)

Values Returns an array of IxHash element values corresponding to the list of supplied indices. Returns

an array of all the values if called without arguments. Note the return value is mostly only useful

when used in a list context (since perl will convert it to the number of elements in the array when

used in a scalar context, and that may not be very useful).

If a single argument is given, returns the single value corresponding to the index. This is usable

in either scalar or list context.

Indices Returns an array of indices corresponding to the supplied list of keys. Note the return value is

mostly only useful when used in a list context (since perl will convert it to the number of

elements in the array when used in a scalar context, and that may not be very useful).

If a single argument is given, returns the single index corresponding to the key. This is usable in

either scalar or list context.

Delete Removes elements with the supplied keys from the IxHash.

Replace Substitutes the IxHash element at the specified index with the supplied value-key pair. If a key is

not supplied, simply substitutes the value at index with the supplied value. If an element with the

supplied key already exists, it will be removed from the IxHash first.

Reorder This method can be used to manipulate the internal order of the IxHash elements by supplying a

list of keys in the desired order. Note however, that any IxHash elements whose keys are not in

the list will be removed from the IxHash.

Length Returns the number of IxHash elements.

SortByKey

Reorders the IxHash elements by textual comparison of the keys.

SortByValue

Reorders the IxHash elements by textual comparison of the values.

Clear Resets the IxHash to its pristine state: with no elements at all.

EXAMPLE
use Tie::IxHash;

simple interface

$t = tie(%myhash, 'Tie::IxHash', 'a' => 1, 'b' => 2);

%myhash = (first => 1, second => 2, third => 3);

$myhash{fourth} = 4;

@keys = keys %myhash;

@values = values %myhash;

print("y") if exists $myhash{third};

OO interface

$t = Tie::IxHash−>new(first => 1, second => 2, third => 3);

$t−>Push(fourth => 4); # same as $myhash{'fourth'} = 4;

($k, $v) = $t−>Pop; # $k is 'fourth', $v is 4

$t−>Unshift(neg => −1, zeroth => 0);

($k, $v) = $t−>Shift; # $k is 'neg', $v is −1

@oneandtwo = $t−>Splice(1, 2, foo => 100, bar => 101);

@keys = $t−>Keys;

@values = $t−>Values;

@indices = $t−>Indices('foo', 'zeroth');

@itemkeys = $t−>Keys(@indices);

@itemvals = $t−>Values(@indices);

$t−>Replace(2, 0.3, 'other');

$t−>Delete('second', 'zeroth');

perl v5.20.2 2015-06-06 2

Tie::IxHash(3pm) User Contributed Perl Documentation Tie::IxHash(3pm)

$len = $t−>Length; # number of key−value pairs

$t−>Reorder(reverse @keys);

$t−>SortByKey;

$t−>SortByValue;

BUGS
You cannot specify a negative length to Splice. Neg ative indexes are OK, though.

NOTE
Indexing always begins at 0 (despite the current $[setting) for all the functions.

TODO
Addition of elements with keys that already exist to the end of the IxHash must be controlled by a switch.

Provide TIEARRAY interface when it stabilizes in Perl.

Rewrite using XSUBs for efficiency.

AUTHOR
Gurusamy Sarathy gsar@umich.edu

Copyright (c) 1995 Gurusamy Sarathy. All rights reserved. This program is free software; you can

redistribute it and/or modify it under the same terms as Perl itself.

VERSION
Version 1.23

SEE ALSO
perl (1)

perl v5.20.2 2015-06-06 3

