
ReadKey(3pm) User Contributed Perl Documentation ReadKey(3pm)

NAME
Term::ReadKey − A perl module for simple terminal control

SYNOPSIS
use Term::ReadKey;

ReadMode 4; # Turn off controls keys

while (not defined ($key = ReadKey(−1))) {

No key yet

}

print "Get key $key\n";

ReadMode 0; # Reset tty mode before exiting

DESCRIPTION
Term::ReadKey is a compiled perl module dedicated to providing simple control over terminal driver

modes (cbreak, raw, cooked, etc.,) support for non-blocking reads, if the architecture allows, and some

generalized handy functions for working with terminals. One of the main goals is to have the functions as

portable as possible, so you can just plug in ‘‘use Term::ReadKey’’ on any architecture and have a good

likelihood of it working.

Version 2.30.01: Added handling of arrows, page up/down, home/end, insert/delete keys under Win32.

These keys emit xterm-compatible sequences. Works with Term::ReadLine::Perl.

ReadMode MODE [, Filehandle]

Takes an integer argument or a string synonym (case insensitive), which can currently be one of the

following values:

INT SYNONYM DESCRIPTION

0 'restore' Restore original settings.

1 'normal' Change to what is commonly the default mode,

echo on, buffered, signals enabled, Xon/Xoff

possibly enabled, and 8−bit mode possibly disabled.

2 'noecho' Same as 1, just with echo off. Nice for

reading passwords.

3 'cbreak' Echo off, unbuffered, signals enabled, Xon/Xoff

possibly enabled, and 8−bit mode possibly enabled.

4 'raw' Echo off, unbuffered, signals disabled, Xon/Xoff

disabled, and 8−bit mode possibly disabled.

5 'ultra−raw' Echo off, unbuffered, signals disabled, Xon/Xoff

disabled, 8−bit mode enabled if parity permits,

and CR to CR/LF translation turned off.

These functions are automatically applied to the STDIN handle if no other handle is supplied. Modes 0

and 5 have some special properties worth mentioning: not only will mode 0 restore original settings,

but it cause the next ReadMode call to save a new set of default settings. Mode 5 is similar to mode 4,

except no CR/LF translation is performed, and if possible, parity will be disabled (only if not being

used by the terminal, however. It is no different from mode 4 under Windows.)

If you just need to read a key at a time, then modes 3 or 4 are probably sufficient. Mode 4 is a tad more

flexible, but needs a bit more work to control. If you use ReadMode 3, then you should install a

SIGINT or END handler to reset the terminal (via ReadMode 0) if the user aborts the program via ˆC.

(For any mode, an END handler consisting of ‘‘ReadMode 0’’ is actually a good idea.)

If you are executing another program that may be changing the terminal mode, you will either want to

perl v5.30.0 2019-10-18 1

ReadKey(3pm) User Contributed Perl Documentation ReadKey(3pm)

say

ReadMode 1; # same as ReadMode 'normal'

system('someprogram');

ReadMode 1;

which resets the settings after the program has run, or:

$somemode=1;

ReadMode 0; # same as ReadMode 'restore'

system('someprogram');

ReadMode 1;

which records any changes the program may have made, before resetting the mode.

ReadKey MODE [, Filehandle]

Takes an integer argument, which can currently be one of the following values:

0 Perform a normal read using getc

−1 Perform a non−blocked read

>0 Perform a timed read

If the filehandle is not supplied, it will default to STDIN. If there is nothing waiting in the buffer during

a non-blocked read, then undef will be returned. In most situations, you will probably want to use

ReadKey −1.

NOTE that if the OS does not provide any known mechanism for non-blocking reads, then a ReadKey

−1 can die with a fatal error. This will hopefully not be common.

If MODE is greater then zero, then ReadKey will use it as a timeout value in seconds (fractional

seconds are allowed), and won’t return undef until that time expires.

NOTE, again, that some OS’s may not support this timeout behaviour.

If MODE is less then zero, then this is treated as a timeout of zero, and thus will return immediately if

no character is waiting. A MODE of zero, however, will act like a normal getc.

NOTE, there are currently some limitations with this call under Windows. It may be possible that non-

blocking reads will fail when reading repeating keys from more then one console.

ReadLine MODE [, Filehandle]

Takes an integer argument, which can currently be one of the following values:

0 Perform a normal read using scalar(<FileHandle>)

−1 Perform a non−blocked read

>0 Perform a timed read

If there is nothing waiting in the buffer during a non-blocked read, then undef will be returned.

NOTE, that if the OS does not provide any known mechanism for non-blocking reads, then a

ReadLine 1 can die with a fatal error. This will hopefully not be common.

NOTE that a non-blocking test is only performed for the first character in the line, not the entire line.

This call will probably not do what you assume, especially with ReadMode MODE values higher then

1. For example, pressing Space and then Backspace would appear to leave you where you started, but

any timeouts would now be suspended.

This call is currently not available under Windows.

GetTerminalSize [Filehandle]

Returns either an empty array if this operation is unsupported, or a four element array containing: the

width of the terminal in characters, the height of the terminal in character, the width in pixels, and the

height in pixels. (The pixel size will only be valid in some environments.)

NOTE, under Windows, this function must be called with an output filehandle, such as STDOUT, or a

perl v5.30.0 2019-10-18 2

ReadKey(3pm) User Contributed Perl Documentation ReadKey(3pm)

handle opened to CONOUT$.

SetTerminalSize WIDTH,HEIGHT,XPIX,YPIX [, Filehandle]

Return −1 on failure, 0 otherwise.

NOTE that this terminal size is only for informative value, and changing the size via this mechanism

will not change the size of the screen. For example, XTerm uses a call like this when it resizes the

screen. If any of the new measurements vary from the old, the OS will probably send a SIGWINCH

signal to anything reading that tty or pty.

This call does not work under Windows.

GetSpeed [, Filehandle]

Returns either an empty array if the operation is unsupported, or a two value array containing the

terminal in and out speeds, in decimal. E.g, an in speed of 9600 baud and an out speed of 4800 baud

would be returned as (9600,4800). Note that currently the in and out speeds will always be identical in

some OS’s.

No speeds are reported under Windows.

GetControlChars [, Filehandle]

Returns an array containing key/value pairs suitable for a hash. The pairs consist of a key, the name of

the control character/signal, and the value of that character, as a single character.

This call does nothing under Windows.

Each key will be an entry from the following list:

DISCARD

DSUSPEND

EOF

EOL

EOL2

ERASE

ERASEWORD

INTERRUPT

KILL

MIN

QUIT

QUOTENEXT

REPRINT

START

STATUS

STOP

SUSPEND

SWITCH

TIME

Thus, the following will always return the current interrupt character, reg ardless of platform.

%keys = GetControlChars;

$int = $keys{INTERRUPT};

SetControlChars [, Filehandle]

Takes an array containing key/value pairs, as a hash will produce. The pairs should consist of a key

that is the name of a legal control character/signal, and the value should be either a single character, or

a number in the range 0−255. SetControlChars will die with a runtime error if an invalid character

name is passed or there is an error changing the settings. The list of valid names is easily available via

perl v5.30.0 2019-10-18 3

ReadKey(3pm) User Contributed Perl Documentation ReadKey(3pm)

%cchars = GetControlChars();

@cnames = keys %cchars;

This call does nothing under Windows.

AUTHOR
Kenneth Albanowski <kjahds@kjahds.com>

Currently maintained by Jonathan Stowe <jns@gellyfish.co.uk>

SUPPORT
The code is maintained at

https://github.com/jonathanstowe/TermReadKey

Please feel free to fork and suggest patches.

LICENSE
Prior to the 2.31 release the license statement was:

Copyright (C) 1994−1999 Kenneth Albanowski.

2001−2005 Jonathan Stowe and others

Unlimited distribution and/or modification is allowed as long as this

copyright notice remains intact.

And was only stated in the README file.

Because I believe the original author’s intent was to be more open than the other commonly used licenses I

would like to leave that in place. However if you or your lawyers require something with some more words

you can optionally choose to license this under the standard Perl license:

This module is free software; you can redistribute it and/or modify it

under the terms of the Artistic License. For details, see the full

text of the license in the file "Artistic" that should have been provided

with the version of perl you are using.

This program is distributed in the hope that it will be useful, but

without any warranty; without even the implied warranty of merchantability

or fitness for a particular purpose.

perl v5.30.0 2019-10-18 4

