
Role::Tiny(3pm) User Contributed Perl Documentation Role::Tiny(3pm)

NAME
Role::Tiny − Roles: a nouvelle cuisine portion size slice of Moose

SYNOPSIS
package Some::Role;

use Role::Tiny;

sub foo { ... }

sub bar { ... }

around baz => sub { ... };

1;

elsewhere

package Some::Class;

use Role::Tiny::With;

bar gets imported, but not foo

with 'Some::Role';

sub foo { ... }

baz is wrapped in the around modifier by Class::Method::Modifiers

sub baz { ... }

1;

If you wanted attributes as well, look at Moo::Role.

DESCRIPTION
Role::Tiny is a minimalist role composition tool.

ROLE COMPOSITION
Role composition can be thought of as much more clever and meaningful multiple inheritance. The basics

of this implementation of roles is:

• If a method is already defined on a class, that method will not be composed in from the role. A method

inherited by a class gets overridden by the role’s method of the same name, though.

• If a method that the role ‘‘requires’’ to be implemented is not implemented, role application will fail

loudly.

Unlike Class::C3, where the last class inherited from ‘‘wins,’’ role composition is the other way around,

where the class wins. If multiple roles are applied in a single call (single with statement), then if any of

their provided methods clash, an exception is raised unless the class provides a method since this conflict

indicates a potential problem.

IMPORTED SUBROUTINES
requires

requires qw(foo bar);

Declares a list of methods that must be defined to compose role.

with

with 'Some::Role1';

with 'Some::Role1', 'Some::Role2';

perl v5.30.0 2019-10-25 1

Role::Tiny(3pm) User Contributed Perl Documentation Role::Tiny(3pm)

Composes another role into the current role (or class via Role::Tiny::With).

If you have conflicts and want to resolve them in favour of Some::Role1 you can instead write:

with 'Some::Role1';

with 'Some::Role2';

If you have conflicts and want to resolve different conflicts in favour of different roles, please refactor your

codebase.

before

before foo => sub { ... };

See ‘‘before method(s) => sub { ... }’’ in Class::Method::Modifiers for full documentation.

Note that since you are not required to use method modifiers, Class::Method::Modifiers is lazily loaded and

we do not declare it as a dependency. If your Role::Tiny role uses modifiers you must depend on both

Class::Method::Modifiers and Role::Tiny.

around

around foo => sub { ... };

See ‘‘around method(s) => sub { ... }’’ in Class::Method::Modifiers for full documentation.

Note that since you are not required to use method modifiers, Class::Method::Modifiers is lazily loaded and

we do not declare it as a dependency. If your Role::Tiny role uses modifiers you must depend on both

Class::Method::Modifiers and Role::Tiny.

after

after foo => sub { ... };

See ‘‘after method(s) => sub { ... }’’ in Class::Method::Modifiers for full documentation.

Note that since you are not required to use method modifiers, Class::Method::Modifiers is lazily loaded and

we do not declare it as a dependency. If your Role::Tiny role uses modifiers you must depend on both

Class::Method::Modifiers and Role::Tiny.

Strict and Warnings

In addition to importing subroutines, using Role::Tiny applies strict and warnings to the caller.

SUBROUTINES
does_role

if (Role::Tiny::does_role($foo, 'Some::Role')) {

...

}

Returns true if class has been composed with role.

This subroutine is also installed as −>does on any class a Role::Tiny is composed into unless that class

already has an −>does method, so

if ($foo−>does('Some::Role')) {

...

}

will work for classes but to test a role, one must use ::does_role directly.

Additionally, Role::Tiny will override the standard Perl DOES method for your class. However, if any class

in your class’ inheritance hierarchy provides DOES, then Role::Tiny will not override it.

METHODS
make_role

Role::Tiny−>make_role('Some::Role');

Makes a package into a role, but does not export any subs into it.

perl v5.30.0 2019-10-25 2

Role::Tiny(3pm) User Contributed Perl Documentation Role::Tiny(3pm)

apply_roles_to_package

Role::Tiny−>apply_roles_to_package(

'Some::Package', 'Some::Role', 'Some::Other::Role'

);

Composes role with package. See also Role::Tiny::With.

apply_roles_to_object

Role::Tiny−>apply_roles_to_object($foo, qw(Some::Role1 Some::Role2));

Composes roles in order into object directly. Object is reblessed into the resulting class. Note that the

object’s methods get overridden by the role’s ones with the same names.

create_class_with_roles

Role::Tiny−>create_class_with_roles('Some::Base', qw(Some::Role1 Some::Role2));

Creates a new class based on base, with the roles composed into it in order. New class is returned.

is_role

Role::Tiny−>is_role('Some::Role1')

Returns true if the given package is a role.

CAVEATS
• On perl 5.8.8 and earlier, applying a role to an object won’t apply any overloads from the role to other

copies of the object.

• On perl 5.16 and earlier, applying a role to a class won’t apply any overloads from the role to any

existing instances of the class.

SEE ALSO
Role::Tiny is the attribute-less subset of Moo::Role; Moo::Role is a meta-protocol-less subset of the king of

role systems, Moose::Role.

Ovid’s Role::Basic provides roles with a similar scope, but without method modifiers, and having some

extra usage restrictions.

AUTHOR
mst − Matt S. Trout (cpan:MSTROUT) <mst@shadowcat.co.uk>

CONTRIBUTORS
dg − David Leadbeater (cpan:DGL) <dgl@dgl.cx>

frew − Arthur Axel ‘‘fREW’’ Schmidt (cpan:FREW) <frioux@gmail.com>

hobbs − Andrew Rodland (cpan:ARODLAND) <arodland@cpan.org>

jnap − John Napiorkowski (cpan:JJNAPIORK) <jjn1056@yahoo.com>

ribasushi − Peter Rabbitson (cpan:RIBASUSHI) <ribasushi@cpan.org>

chip − Chip Salzenberg (cpan:CHIPS) <chip@pobox.com>

ajgb − Alex J. G. Burzyski (cpan:AJGB) <ajgb@cpan.org>

doy − Jesse Luehrs (cpan:DOY) <doy at tozt dot net>

perigrin − Chris Prather (cpan:PERIGRIN) <chris@prather.org>

Mithaldu − Christian Walde (cpan:MITHALDU) <walde.christian@googlemail.com>

ilmari − Dagfinn Ilmari Mannsåker (cpan:ILMARI) <ilmari@ilmari.org>

tobyink − Toby Inkster (cpan:TOBYINK) <tobyink@cpan.org>

haarg − Graham Knop (cpan:HAARG) <haarg@haarg.org>

COPYRIGHT
Copyright (c) 2010−2012 the Role::Tiny ‘‘AUTHOR’’ and ‘‘CONTRIBUTORS’’ as listed above.

perl v5.30.0 2019-10-25 3

Role::Tiny(3pm) User Contributed Perl Documentation Role::Tiny(3pm)

LICENSE
This library is free software and may be distributed under the same terms as perl itself.

perl v5.30.0 2019-10-25 4

