NETWORKMANAGER(8) Network management daemons NETWORKMANAGER(8)

NAME

NetworkManager — network management daemon
SYNOPSIS

NetworkManager [OPTIONS...]
DESCRIPTION

The NetworkManager daemon attempts to make networking configuration and operation as painless and
automatic as possible by managing the primary network connection and other network interfaces, like
Ethernet, Wi—Fi, and Mobile Broadband devices. NetworkManager will connect any network device when
a connection for that device becomes available, unless that behavior is disabled. Information about
networking is exported via a D—Bus interface to any interested application, providing a rich API with which
to inspect and control network settings and operation.

DISPATCHER SCRIPTS
NetworkManager will execute scripts in the /etc/NetworkManager/dispatcher.d directory or subdirectories
in alphabetical order in response to network events. Each script should be a regular executable file owned
by root. Furthermore, it must not be writable by group or other, and not setuid.

Each script receives two arguments, the first being the interface name of the device an operation just
happened on, and second the action. For device actions, the interface is the name of the kernel interface
suitable for IP configuration. Thus it is either VPN_IP_IFACE, DEVICE_IP_IFACE, or DEVICE_IFACE,
as applicable. For the hostname and connectivity—change actions it is always "none".

The actions are:

pre—up
The interface is connected to the network but is not yet fully activated. Scripts acting on this event
must be placed or symlinked into the /etc/NetworkManager/dispatcher.d/pre—up.d directory, and
NetworkManager will wait for script execution to complete before indicating to applications that the
interface is fully activated.

up
The interface has been activated.

pre—down
The interface will be deactivated but has not yet been disconnected from the network. Scripts acting on
this event must be placed or symlinked into the /etc/NetworkManager/dispatcher.d/pre—down.d
directory, and NetworkManager will wait for script execution to complete before disconnecting the
interface from its network. Note that this event is not emitted for forced disconnections, like when
carrier is lost or a wireless signal fades. It is only emitted when there is an opportunity to cleanly
handle a network disconnection event.

down
The interface has been deactivated.

vpn—pre—up
The VPN is connected to the network but is not yet fully activated. Scripts acting on this event must be
placed or symlinked into the /etc/NetworkManager/dispatcher.d/pre—up.d directory, and
NetworkManager will wait for script execution to complete before indicating to applications that the
VPN is fully activated.

vpn—up

A VPN connection has been activated.

vpn—pre—down
The VPN will be deactivated but has not yet been disconnected from the network. Scripts acting on
this event must be placed or symlinked into the /etc/NetworkManager/dispatcher.d/pre—down.d
directory, and NetworkManager will wait for script execution to complete before disconnecting the
VPN from its network. Note that this event is not emitted for forced disconnections, like when the
VPN terminates unexpectedly or general connectivity is lost. It is only emitted when there is an
opportunity to cleanly handle a VPN disconnection event.

NetworkManager 1.22.10 1



NETWORKMANAGER(8) Network management daemons NETWORKMANAGER(8)

vpn—down
A VPN connection has been deactivated.
hostname
The system hostname has been updated. Use gethostname(2) to retrieve it. The interface name (first
argument) is empty and no environment variable is set for this action.
dhcp4—change
The DHCPv4 lease has changed (renewed, rebound, etc).
dhcp6—change
The DHCPV6 lease has changed (renewed, rebound, etc).

connectivity—change
The network connectivity state has changed (no connectivity, went online, etc).

The environment contains more information about the interface and the connection. The following variables
are available for the use in the dispatcher scripts:

NM_DISPATCHER_ACTION
The dispatcher action like "up" or "dhcp4—change", identical to the first command line argument.
Since NetworkManager 1.12.0.

CONNECTION_UUID
The UUID of the connection profile.

CONNECTION_ID
The name (ID) of the connection profile.

CONNECTION_DBUS_PATH
The NetworkManager D—Bus path of the connection.

CONNECTION_FILENAME
The backing file name of the connection profile (if any).

CONNECTION_EXTERNAL
If "1", this indicates that the connection describes a network configuration created outside of
NetworkManager.

DEVICE_IFACE
The interface name of the control interface of the device. Depending on the device type, this differs
from DEVICE_IP_IFACE. For example for ADSL devices, this could be 'atm0' or for WWAN devices
it might be 'ttyUSBO'".

DEVICE_IP_IFACE
The IP interface name of the device. This is the network interface on which IP addresses and routes
will be configured.

IP4 ADDRESS N
The IPv4 address in the format "address/prefix gateway", where N is a number from O to (# IPv4
addresses — 1). gateway item in this variable is deprecated, use IP4_GATEWAY instead.

IP4 NUM_ADDRESSES
The variable contains the number of IPv4 addresses the script may expect.

IP4_GATEWAY
The gateway IPv4 address in traditional numbers—and—dots notation.

IP4 ROUTE_N
The IPv4 route in the format "address/prefix next—hop metric", where N is a number from O to (# IPv4
routes — 1).

IP4 NUM_ROUTES
The variable contains the number of IPv4 routes the script may expect.

IP4_NAMESERVERS

NetworkManager 1.22.10 2



NETWORKMANAGER(8) Network management daemons NETWORKMANAGER(8)

The variable contains a space—separated list of the DNS servers.

IP4_DOMAINS
The variable contains a space—separated list of the search domains.

DHCP4_<dhcp—option—name >
If the connection used DHCP for address configuration, the received DHCP configuration is passed in

the environment using standard DHCP option names, prefixed with "DHCP4_", like
"DHCP4_HOST_NAME=foobar".

IP6_<name> and DHCP6_<name>
The same variables as for IPv4 are available for IPv6, but the prefixes are IP6_ and DHCP6_ instead.

CONNECTIVITY STATE
The network connectivity state, which can take the values defined by the NMConnectivityState type,
from the org.freedesktop.NetworkManager D-Bus API: unknown, none, portal, limited or full. Note:
this variable will only be set for connectivity—change actions.

In case of VPN, VPN_IP_IFACE is set, and IP4_*, IP6_* variables with VPN prefix are exported too, like
VPN_IP4_ADDRESS_0, VPN_IP4_NUM_ADDRESSES.

Dispatcher scripts are run one at a time, but asynchronously from the main NetworkManager process, and
will be killed if they run for too long. If your script might take arbitrarily long to complete, you should
spawn a child process and have the parent return immediately. Scripts that are symbolic links pointing
inside the /etc/NetworkManager/dispatcher.d/no—wait.d/ directory are run immediately, without waiting for
the termination of previous scripts, and in parallel. Also beware that once a script is queued, it will always
be run, even if a later event renders it obsolete. (Eg, if an interface goes up, and then back down again
quickly, it is possible that one or more "up" scripts will be run after the interface has gone down.)

OPTIONS

The following options are understood:

——version | -V
Print the NetworkManager software version and exit.

——help | -h
Print NetworkManager's available options and exit.

—-no—daemon | —n
Do not daemonize.

——debug | -d
Do not daemonize, and direct log output to the controlling terminal in addition to syslog.

——pid-file | -p
Specify location of a PID file. The PID file is used for storing PID of the running process and prevents
running multiple instances.

——state—file
Specify file for storing state of the NetworkManager persistently. If not specified, the default value of
/var/lib/NetworkManager/NetworkManager.state is used.

——config
Specify configuration file to set up various settings for NetworkManager. If not specified, the default
value of /etc/NetworkManager/NetworkManager.conf is used with a fallback to the older
'nm-system—settings.conf' if located in the same directory. See NetworkManager.conf(5) for more
information on configuration file.

——configure—and—quit [initrd]
Quit after all devices reach a stable state. The optional initrd parameter enables mode, where no
processes are left running after NetworkManager stops, which is useful for running from an initial
ramdisk on rearly boot.

——plugins

NetworkManager 1.22.10 3



NETWORKMANAGER(8) Network management daemons NETWORKMANAGER(8)

List plugins used to manage system—wide connection settings. This list has preference over plugins
specified in the configuration file. See main.plugins setting in NetworkManager.conf(5) for supported
options.

——log-level
Sets how much information NetworkManager sends to the log destination (usually syslog's "daemon"
facility). By default, only informational, warning, and error messages are logged. See the section on
logging in NetworkManager.conf(5) for more information.

——log—-domains
A comma-—separated list specifying which operations are logged to the log destination (usually
syslog). By default, most domains are logging—enabled. See the section on logging in
NetworkManager.conf(5) for more information.

——print—config
Print the NetworkManager configuration to stdout and exit.

UDEYV PROPERTIES
udev(7) device manager is used for the network device discovery. The following property influences how
NetworkManager manages the devices:

NM_UNMANAGED
If set to "1" or "true", the device is configured as unmanaged by NetworkManager. Note that the user
still can explicitly overrule this configuration via means like nmcli device set "$DEVICE'" managed
yes or "device*.managed=1" in NetworkManager.conf.

SIGNALS

NetworkManager process handles the following signals:

SIGHUP
The signal causes a reload of NetworkManager's configuration. Note that not all configuration
parameters can be changed at runtime and therefore some changes may be applied only after the next
restart of the daemon. A SIGHUP also involves further reloading actions, like doing a DNS update and
restarting the DNS plugin. The latter can be useful for example when using the dnsmasq plugin and
changing its configuration in /etc/NetworkManager/dnsmasq.d. However, it also means this will
shortly interrupt name resolution. In the future, there may be further actions added. A SIGHUP means
to update NetworkManager configuration and reload everything that is supported. Note that this does
not reload connections from disk. For that there is a D-Bus API and nmcli's reload action

SIGUSRI1
The signal forces a rewrite of DNS configuration. Contrary to SIGHUP, this does not restart the DNS
plugin and will not interrupt name resolution. In the future, further actions may be added. A SIGUSR1
means to write out data like resolv.conf, or refresh a cache. It is a subset of what is done for SIGHUP
without reloading configuration from disk.

SIGUSR2
The signal has no effect at the moment but is reserved for future use.

An alternative to a signal to reload configuration is the Reload D—Bus call. It allows for more fine—grained
selection of what to reload, it only returns after the reload is complete, and it is guarded by PolicyK:it.

DEBUGGING
The following environment variables are supported to help debugging. When used in conjunction with the
——no—daemon option (thus echoing PPP and DHCP helper output to stdout) these can quickly help
pinpoint the source of connection issues. Also see the ——log—level and ——log—domains to enable debug
logging inside NetworkManager itself.

NM_PPP_DEBUG: When set to anything, causes NetworkManager to turn on PPP debugging in pppd,
which logs all PPP and PPTP frames and client/server exchanges.

NetworkManager 1.22.10 4



NETWORKMANAGER(8) Network management daemons NETWORKMANAGER(8)

BUGS
Please report any bugs you find in NetworkManager at the NetworkManager bug tracker!!!.

SEE ALSO
NetworkManager home page[z], NetworkManager.conf(5), nmcli(1), nmcli-examples(7), nm-
online(1), nm-settings(5), nm-applet(1), nm-connection-editor(1), udev(7)

NOTES
1. NetworkManager bug tracker
https://bugzilla.gnome.org/enter_bug.cgi?product=NetworkManager

2. NetworkManager home page
https://wiki.gnome.org/Projects/NetworkManager

NetworkManager 1.22.10 5



