
Net::HTTP(3pm) User Contributed Perl Documentation Net::HTTP(3pm)

NAME
Net::HTTP − Low−level HTTP connection (client)

VERSION
version 6.19

SYNOPSIS
use Net::HTTP;
my $s = Net::HTTP−>new(Host => "www.perl.com") || die $@;
$s−>write_request(GET => "/", 'User−Agent' => "Mozilla/5.0");
my($code, $mess, %h) = $s−>read_response_headers;

while (1) {
my $buf;
my $n = $s−>read_entity_body($buf, 1024);
die "read failed: $!" unless defined $n;
last unless $n;
print $buf;

}

DESCRIPTION
The Net::HTTP class is a low-level HTTP client. An instance of the Net::HTTP class represents a

connection to an HTTP server. The HTTP protocol is described in RFC 2616. The Net::HTTP class

supports HTTP/1.0 and HTTP/1.1.

Net::HTTP is a sub-class of one of IO::Socket::IP (IPv6+IPv4), IO::Socket::INET6
(IPv6+IPv4), or IO::Socket::INET (IPv4 only). You can mix the methods described below with

reading and writing from the socket directly. This is not necessary a good idea, unless you know what you

are doing.

The following methods are provided (in addition to those of IO::Socket::INET):

$s = Net::HTTP−>new(%options)

The Net::HTTP constructor method takes the same options as IO::Socket::INET’s as well as

these:

Host: Initial host attribute value
KeepAlive: Initial keep_alive attribute value
SendTE: Initial send_te attribute_value
HTTPVersion: Initial http_version attribute value
PeerHTTPVersion: Initial peer_http_version attribute value
MaxLineLength: Initial max_line_length attribute value
MaxHeaderLines: Initial max_header_lines attribute value

The Host option is also the default for IO::Socket::INET’s PeerAddr. The PeerPort
defaults to 80 if not provided. The PeerPort specification can also be embedded in the PeerAddr
by preceding it with a ‘‘:’’, and closing the IPv6 address on brackets ‘‘[]’’ if necessary:

‘‘192.0.2.1:80’’,‘‘[2001:db8::1]:80’’,‘‘any.example.com:80’’.

The Listen option provided by IO::Socket::INET’s constructor method is not allowed.

If unable to connect to the given HTTP server then the constructor returns undef and $@ contains the

reason. After a successful connect, a Net:HTTP object is returned.

$s−>host

Get/set the default value of the Host header to send. The $host must not be set to an empty string

(or undef) for HTTP/1.1.

$s−>keep_alive

Get/set the keep-alive value. If this value is TRUE then the request will be sent with headers indicating

that the server should try to keep the connection open so that multiple requests can be sent.

perl v5.28.1 2019-07-18 1

Net::HTTP(3pm) User Contributed Perl Documentation Net::HTTP(3pm)

The actual headers set will depend on the value of the http_version and peer_http_version
attributes.

$s−>send_te

Get/set the a value indicating if the request will be sent with a ‘‘TE’’ header to indicate the transfer

encodings that the server can choose to use. The list of encodings announced as accepted by this

client depends on availability of the following modules: Compress::Raw::Zlib for deflate, and

IO::Compress::Gunzip for gzip.

$s−>http_version

Get/set the HTTP version number that this client should announce. This value can only be set to ‘‘1.0’’

or ‘‘1.1’’. The default is ‘‘1.1’’.

$s−>peer_http_version

Get/set the protocol version number of our peer. This value will initially be ‘‘1.0’’, but will be updated

by a successful read_response_headers() method call.

$s−>max_line_length

Get/set a limit on the length of response line and response header lines. The default is 8192. A value

of 0 means no limit.

$s−>max_header_length

Get/set a limit on the number of header lines that a response can have. The default is 128. A value of

0 means no limit.

$s−>format_request($method, $uri, %headers, [$content])

Format a request message and return it as a string. If the headers do not include a Host header, then a

header is inserted with the value of the host attribute. Headers like Connection and

Keep−Alive might also be added depending on the status of the keep_alive attribute.

If $content is given (and it is non-empty), then a Content−Length header is automatically

added unless it was already present.

$s−>write_request($method, $uri, %headers, [$content])

Format and send a request message. Arguments are the same as for format_request(). Returns true if

successful.

$s−>format_chunk($data)

Returns the string to be written for the given chunk of data.

$s−>write_chunk($data)

Will write a new chunk of request entity body data. This method should only be used if the

Transfer−Encoding header with a value of chunked was sent in the request. Note, writing

zero-length data is a no-op. Use the write_chunk_eof() method to signal end of entity body data.

Returns true if successful.

$s−>format_chunk_eof(%trailers)

Returns the string to be written for signaling EOF when a Transfer−Encoding of chunked is

used.

$s−>write_chunk_eof(%trailers)

Will write eof marker for chunked data and optional trailers. Note that trailers should not really be

used unless is was signaled with a Trailer header.

Returns true if successful.

($code, $mess, %headers) = $s−>read_response_headers(%opts)

Read response headers from server and return it. The $code is the 3 digit HTTP status code (see

HTTP::Status) and $mess is the textual message that came with it. Headers are then returned as

key/value pairs. Since key letter casing is not normalized and the same key can even occur multiple

times, assigning these values directly to a hash is not wise. Only the $code is returned if this method

is called in scalar context.

perl v5.28.1 2019-07-18 2

Net::HTTP(3pm) User Contributed Perl Documentation Net::HTTP(3pm)

As a side effect this method updates the ’peer_http_version’ attribute.

Options might be passed in as key/value pairs. There are currently only two options supported;

laxed and junk_out.

The laxed option will make read_response_headers() more forgiving towards servers that have not

learned how to speak HTTP properly. The laxed option is a boolean flag, and is enabled by passing

in a TRUE value. The junk_out option can be used to capture bad header lines when laxed is

enabled. The value should be an array reference. Bad header lines will be pushed onto the array.

The laxed option must be specified in order to communicate with pre−HTTP/1.0 servers that don’t

describe the response outcome or the data they send back with a header block. For these servers

peer_http_version is set to ‘‘0.9’’ and this method returns (200, ‘‘Assumed OK’’).

The method will raise an exception (die) if the server does not speak proper HTTP or if the

max_line_length or max_header_length limits are reached. If the laxed option is turned

on and max_line_length and max_header_length checks are turned off, then no exception

will be raised and this method will always return a response code.

$n = $s−>read_entity_body($buf, $size);

Reads chunks of the entity body content. Basically the same interface as for read() and sysread(), but

the buffer offset argument is not supported yet. This method should only be called after a successful

read_response_headers() call.

The return value will be undef on read errors, 0 on EOF, −1 if no data could be returned this time,

otherwise the number of bytes assigned to $buf. The $buf is set to "" when the return value is −1.

You normally want to retry this call if this function returns either −1 or undef with $! as EINTR or

EAGAIN (see Errno). EINTR can happen if the application catches signals and EAGAIN can happen if

you made the socket non-blocking.

This method will raise exceptions (die) if the server does not speak proper HTTP. This can only

happen when reading chunked data.

%headers = $s−>get_trailers

After read_entity_body() has returned 0 to indicate end of the entity body, you might call this method

to pick up any trailers.

$s−>_rbuf

Get/set the read buffer content. The read_response_headers() and read_entity_body() methods use

an internal buffer which they will look for data before they actually sysread more from the socket

itself. If they read too much, the remaining data will be left in this buffer.

$s−>_rbuf_length

Returns the number of bytes in the read buffer. This should always be the same as:

length($s−>_rbuf)

but might be more efficient.

SUBCLASSING
The read_response_headers() and read_entity_body() will invoke the sysread() method when they need

more data. Subclasses might want to override this method to control how reading takes place.

The object itself is a glob. Subclasses should avoid using hash key names prefixed with http_ and io_.

SEE ALSO
LWP, IO::Socket::INET, Net::HTTP::NB

AUTHOR
Gisle Aas <gisle@activestate.com>

perl v5.28.1 2019-07-18 3

Net::HTTP(3pm) User Contributed Perl Documentation Net::HTTP(3pm)

COPYRIGHT AND LICENSE
This software is copyright (c) 2001−2017 by Gisle Aas.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

perl v5.28.1 2019-07-18 4

