
Lintian::Command(3) Debian Package Checker Lintian::Command(3)

NAME
Lintian::Command − Utilities to execute other commands from lintian code

SYNOPSIS
use Lintian::Command qw(spawn);

simplest possible call
my $success = spawn({}, ['command']);

catch output
my $opts = {};
$success = spawn($opts, ['command']);
if ($success) {

print "STDOUT: $opts−>{out}\n";
print "STDERR: $opts−>{err}\n";

}

from file to file
$opts = { in => 'infile.txt', out => 'outfile.txt' };
$success = spawn($opts, ['command']);

piping
$success = spawn({}, ['command'], "|", ['othercommand']);

DESCRIPTION
Lintian::Command is a thin wrapper around IPC::Run, that catches exception and implements a useful
default behaviour for input and output redirection.

Lintian::Command provides a function spawn() which is a wrapper around IPC::Run::run() resp.
IPC::Run::start() (depending on whether a pipe is requested). To wait for finished child processes, it also
provides the reap() function as a wrapper around IPC::Run::finish().

spawn($opts, @cmds)
The @cmds array is given to IPC::Run::run() (or ::start()) unaltered, but should only be used for
commands and piping symbols (i.e. all of the elements should be either an array reference, a code
reference, ’|’, or ’&’). I/O redirection is handled via the $opts hash reference. If you need more fine
grained control than that, you should just use IPC::Run directly.

$opts is a hash reference which can be used to set options and to retrieve the status and output of the
command executed.

The following hash keys can be set to alter the behaviour of spawn():

in STDIN for the first forked child. Defaults to \undef.

CAVEAT: Due to #301774, passing a SCALAR ref as STDIN for the child leaks memory. The leak is
plugged for the \undef case in spawn, but other scalar refs may still be leaked.

pipe_in
Use a pipe for STDIN and start the process in the background. You will need to close the pipe after use
and call $opts−>{harness}−>finish in order for the started process to end properly.

out STDOUT of the last forked child. Will be set to a newly created scalar reference by default which can
be used to retrieve the output after the call.

Can be ’&N’ (e.g. &2) to redirect it to (numeric) file descriptor.

out_append
STDOUT of all forked children, cannot be used with out and should only be used with files. Unlike
out, this appends the output to the file instead of truncating the file.

Lintian v2.62.0ubuntu2.2 2022-11-09 1

Lintian::Command(3) Debian Package Checker Lintian::Command(3)

pipe_out
Use a pipe for STDOUT and start the process in the background. You will need to call
$opts−>{harness}−>finish in order for the started process to end properly.

err STDERR of all forked children. Defaults to STDERR of the parent.

Can be ’&N’ (e.g. &1) to redirect it to (numeric) file descriptor.

err_append
STDERR of all forked children, cannot be used with err and should only be used with files. Unlike err,
this appends the output to the file instead of truncating the file.

pipe_err
Use a pipe for STDERR and start the process in the background. You will need to call
$opts−>{harness}−>finish in order for the started process to end properly.

fail Configures the behaviour in case of errors. The default is ’exception’, which will cause spawn() to die
in case of exceptions thrown by IPC::Run. If set to ’error’ instead, it will also die if the command
exits with a non-zero error code. If exceptions should be handled by the caller, setting it to ’never’
will cause it to store the exception in the exception key instead.

child_before_exec
Run the given subroutine in each of the children before they run ‘‘exec’’.

This is passed to ‘‘harness’’ in IPC::Run as the init keyword.

The following additional keys will be set during the execution of spawn():

harness
Will contain the IPC::Run object used for the call which can be used to query the exit values of the
forked programs (E.g. with results() and full_results()) and to wait for processes started in the
background.

exception
If an exception is raised during the execution of the commands, and if fail is set to ’never’, the
exception will be caught and stored under this key.

success
Will contain the return value of spawn().

reap($opts[, $opts[,...]])
If you used one of the pipe_* options to spawn() or used the shell-style ‘‘&’’ operator to send the process
to the background, you will need to wait for your child processes to finish. For this you can use the reap()

function, which you can call with the $opts hash reference you gav e to spawn() and which will do the
right thing. Multiple $opts can be passed.

Note however that this function will not close any of the pipes for you, so you probably want to do that first
before calling this function.

The following keys of the $opts hash have roughly the same function as for spawn():

harness
fail
success
exception

All other keys are probably just ignored.

kill($opts[, $opts[, ...]])
This is a simple wrapper around the kill_kill function. It doesn’t allow any customisation, but takes an
$opts hash ref and SIGKILLs the process two seconds after SIGTERM is sent. If multiple hash refs are
passed it executes kill_kill on each of them. The return status is the ORed value of all the executions of
kill_kill.

Lintian v2.62.0ubuntu2.2 2022-11-09 2

Lintian::Command(3) Debian Package Checker Lintian::Command(3)

done($opts)
Check if a process and its children are done. This is useful when one wants to know whether reap() can be
called without blocking waiting for the process. It takes a single hash reference as returned by spawn.

safe_qx([$opts,] @cmds)
Variant of spawn that emulates the qx() operator by returning the captured output.

It takes the same arguments as spawn and they hav e the same basic semantics with the following
exceptions:

The initial $opts is optional.
If only a single command is to be run, the surrounding list reference can be omitted (see the examples
below).

If $opts is given, caller must ensure that the output is captured as a scalar reference in $opts−{out}>
(possibly by omitting the ‘‘out’’ and ‘‘out_append’’ keys).

Furthermore, the commands should not be backgrounded, so they cannot use ’&’ nor (e.g.
$opts−{pipe_in}>).

If needed $? will be set after the call like for qx().

Examples:

Capture the output of a simple command
− Both are eqv.
safe_qx('grep', 'some−pattern', 'path/to/file');
safe_qx(['grep', 'some−pattern', 'path/to/file']);

Capture the output of some pipeline
safe_qx(['grep', 'some−pattern', 'path/to/file'], '|',

['head', '−n1'])

Call nproc and capture stdout and stderr interleaved
safe_qx({ 'err' => '&1'}, 'nproc')

WRONG: Runs grep with 5 arguments including a literal "|" and
"−n1", which will generally fail with bad arguments.
safe_qx('grep', 'some−pattern', 'path/to/file', '|',

'head', '−n1')

Possible known issue: It might not possible to discard stdout and capture stderr instead.

EXPORTS
Lintian::Command exports nothing by default, but you can export the spawn() and reap() functions.

AUTHOR
Originally written by Frank Lichtenheld <djpig@debian.org> for Lintian.

SEE ALSO
lintian (1), IPC::Run

Lintian v2.62.0ubuntu2.2 2022-11-09 3

