
IO::Socket::SSL::Utils(3pm) User Contributed Perl Documentation IO::Socket::SSL::Utils(3pm)

NAME

IO::Socket::SSL::Utils −− loading, storing, creating certificates and keys

SYNOPSIS

use IO::Socket::SSL::Utils;

my $cert = PEM_file2cert('cert.pem'); # load certificate from file

my $string = PEM_cert2string($cert); # convert certificate to PEM string

CERT_free($cert); # free memory within OpenSSL

my $key = KEY_create_rsa(2048); # create new 2048−bit RSA key

PEM_string2file($key,"key.pem"); # and write it to file

KEY_free($key); # free memory within OpenSSL

DESCRIPTION

This module provides various utility functions to work with certificates and private keys, shielding some of
the complexity of the underlying Net::SSLeay and OpenSSL.

FUNCTIONS

• Functions converting between string or file and certificates and keys. They croak if the operation
cannot be completed.

PEM_file2cert(file) −> cert
PEM_cert2file(cert,file)
PEM_string2cert(string) −> cert
PEM_cert2string(cert) −> string
PEM_file2key(file) −> key
PEM_key2file(key,file)
PEM_string2key(string) −> key
PEM_key2string(key) −> string

• Functions for cleaning up. Each loaded or created cert and key must be freed to not leak memory.

CERT_free(cert)
KEY_free(key)

• KEY_create_rsa(bits) −> key

Creates an RSA key pair, bits defaults to 2048.

• KEY_create_ec(curve) −> key

Creates an EC key, curve defaults to prime256v1.

• CERT_asHash(cert,[digest_algo]) −> hash

Extracts the information from the certificate into a hash and uses the given digest_algo (default:
SHA−256) to determine digest of pubkey and cert. The resulting hash contains:

subject Hash with the parts of the subject, e.g. commonName, countryName, organizationName,
stateOrProvinceName, localityName.

subjectAltNames
Array with list of alternative names. Each entry in the list is of [type,value], where
type can be OTHERNAME, EMAIL, DNS, X400, DIRNAME, EDIPARTY, URI, IP or RID.

issuer Hash with the parts of the issuer, e.g. commonName, countryName, organizationName,
stateOrProvinceName, localityName.

not_before, not_after
The time frame, where the certificate is valid, as time_t, e.g. can be converted with localtime
or similar functions.

serial The serial number

crl_uri List of URIs for CRL distribution.

perl v5.30.0 2020-02-14 1

IO::Socket::SSL::Utils(3pm) User Contributed Perl Documentation IO::Socket::SSL::Utils(3pm)

ocsp_uri List of URIs for revocation checking using OCSP.

keyusage
List of keyUsage information in the certificate.

extkeyusage
List of extended key usage information from the certificate. Each entry in this list consists of
a hash with oid, nid, ln and sn.

pubkey_digest_xxx
Binary digest of the pubkey using the given digest algorithm, e.g. pubkey_digest_sha256 if
(the default) SHA−256 was used.

x509_digest_xxx
Binary digest of the X.509 certificate using the given digest algorithm, e.g.
x509_digest_sha256 if (the default) SHA−256 was used.

fingerprint_xxx
Fingerprint of the certificate using the given digest algorithm, e.g. fingerprint_sha256 if (the
default) SHA−256 was used. Contrary to digest_* this is an ASCII string with a list if
hexadecimal numbers, e.g. ‘‘73:59:75:5C:6D...’’.

signature_alg
Algorithm used to sign certificate, e.g. sha256WithRSAEncryption.

ext List of extensions. Each entry in the list is a hash with oid, nid, sn, critical flag (boolean)
and data (string representation given by X509V3_EXT_print).

version Certificate version, usually 2 (x509v3)

• CERT_create(hash) −> (cert,key)

Creates a certificate based on the given hash. If the issuer is not specified the certificate will be self-
signed. The following keys can be given:

subject Hash with the parts of the subject, e.g. commonName, countryName, ... as described in
CERT_asHash. Default points to IO::Socket::SSL.

not_before
A time_t value when the certificate starts to be valid. Defaults to current time.

not_after
A time_t value when the certificate ends to be valid. Defaults to current time plus one 365
days.

serial The serial number. If not given a random number will be used.

version The version of the certificate, default 2 (x509v3).

CA true|false
If true declare certificate as CA, defaults to false.

purpose string|array|hash
Set the purpose of the certificate. The different purposes can be given as a string separated
by non-word character, as array or hash. With string or array each purpose can be prefixed
with ’+’ (enable) or ’−’ (disable) and same can be done with the value when given as a hash.
By default enabling the purpose is assumed.

If the CA option is given and true the defaults ‘‘ca,sslca,emailca,objca’’ are assumed, but can
be overridden with explicit purpose. If the CA option is given and false the defaults
‘‘server,client’’ are assumed. If no CA option and no purpose is given it defaults to
‘‘server,client’’.

Purpose affects basicConstraints, keyUsage, extKeyUsage and netscapeCertType. The
following purposes are defined (case is not important):

perl v5.30.0 2020-02-14 2

IO::Socket::SSL::Utils(3pm) User Contributed Perl Documentation IO::Socket::SSL::Utils(3pm)

client

server

email

objsign

CA

sslCA

emailCA

objCA

emailProtection

codeSigning

timeStamping

digitalSignature

nonRepudiation

keyEncipherment

dataEncipherment

keyAgreement

keyCertSign

cRLSign

encipherOnly

decipherOnly

Examples:

root−CA for SSL certificates

purpose => 'sslCA' # or CA => 1

server certificate and CA (typically self−signed)

purpose => 'sslCA,server'

client certificate

purpose => 'client',

ext [{ sn => .., data => ... }, ...]
List of extensions. The type of the extension can be specified as name with sn or as NID

with nid and the data with data. These data must be in the same syntax as expected within
openssl.cnf, e.g. something like OCSP;URI=http://.... Additionally the critical flag
can be set with critical = 1>.

key key use given key as key for certificate, otherwise a new one will be generated and returned

issuer_cert cert
set issuer for new certificate

issuer_key key
sign new certificate with given key

issuer [cert, key]
Instead of giving issuer_key and issuer_cert as separate arguments they can be given both
together.

digest algorithm
specify the algorithm used to sign the certificate, default SHA−256.

AUTHOR

Steffen Ullrich

perl v5.30.0 2020-02-14 3

