
IO::Async::Listener(3pm) User Contributed Perl Documentation IO::Async::Listener(3pm)

NAME
"IO::Async::Listener" − listen on network sockets for incoming connections

SYNOPSIS
use IO::Async::Listener;

use IO::Async::Loop;

my $loop = IO::Async::Loop−>new;

my $listener = IO::Async::Listener−>new(

on_stream => sub {

my (undef, $stream) = @_;

$stream−>configure(

on_read => sub {

my ($self, $buffref, $eof) = @_;

$self−>write($$buffref);

$$buffref = "";

return 0;

},

);

$loop−>add($stream);

},

);

$loop−>add($listener);

$listener−>listen(

service => "echo",

socktype => 'stream',

)−>get;

$loop−>run;

This object can also be used indirectly via an IO::Async::Loop:

use IO::Async::Stream;

use IO::Async::Loop;

my $loop = IO::Async::Loop−>new;

$loop−>listen(

service => "echo",

socktype => 'stream',

on_stream => sub {

...

},

)−>get;

$loop−>run;

DESCRIPTION
This subclass of IO::Async::Handle adds behaviour which watches a socket in listening mode, to accept

incoming connections on them.

perl v5.30.0 2019-11-26 1

IO::Async::Listener(3pm) User Contributed Perl Documentation IO::Async::Listener(3pm)

A Listener can be constructed and given a existing socket in listening mode. Alternatively, the Listener can

construct a socket by calling the listen method. Either a list of addresses can be provided, or a service

name can be looked up using the underlying loop’s resolve method.

EVENTS
The following events are invoked, either using subclass methods or CODE references in parameters:

on_accept $clientsocket | $handle
Invoked whenever a new client connects to the socket.

If neither handle_constructor nor handle_class parameters are set, this will be invoked with the

new client socket directly. If a handle constructor or class are set, this will be invoked with the newly-

constructed handle, having the new socket already configured onto it.

on_stream $stream

An alternative to on_accept, this is passed an instance of IO::Async::Stream when a new client connects.

This is provided as a convenience for the common case that a Stream object is required as the transport for

a Protocol object.

This is now vaguely deprecated in favour of using on_accept with a handle constructor or class.

on_socket $socket
Similar to on_stream, but constructs an instance of IO::Async::Socket. This is most useful for

SOCK_DGRAM or SOCK_RAW sockets.

This is now vaguely deprecated in favour of using on_accept with a handle constructor or class.

on_accept_error $socket, $errno
Optional. Invoked if the accept syscall indicates an error (other than EAGAIN or EWOULDBLOCK). If not

provided, failures of accept will be passed to the main on_error handler.

PARAMETERS
The following named parameters may be passed to new or configure:

on_accept => CODE

on_stream => CODE

on_socket => CODE

CODE reference for the event handlers. Because of the mutually-exclusive nature of their behaviour, only

one of these may be set at a time. Setting one will remove the other two.

handle => IO

The IO handle containing an existing listen-mode socket.

handle_constructor => CODE

Optional. If defined, gives a CODE reference to be invoked every time a new client socket is accepted from

the listening socket. It is passed the listener object itself, and is expected to return a new instance of

IO::Async::Handle or a subclass, used to wrap the new client socket.

$handle = $handle_constructor−>($listener)

This can also be given as a subclass method

$handle = $listener−>handle_constructor()

handle_class => STRING

Optional. If defined and handle_constructor isn’t, then new wrapper handles are constructed by

invoking the new method on the given class name, passing in no additional parameters.

$handle = $handle_class−>new()

This can also be given as a subclass method

$handle = $listener−>handle_class−>new

perl v5.30.0 2019-11-26 2

IO::Async::Listener(3pm) User Contributed Perl Documentation IO::Async::Listener(3pm)

acceptor => STRING|CODE
Optional. If defined, gives the name of a method or a CODE reference to use to implement the actual accept

behaviour. This will be invoked as:

($accepted) = $listener−>acceptor($socket)−>get

($handle) = $listener−>acceptor($socket, handle => $handle)−>get

It is invoked with the listening socket as its its argument, and optionally an IO::Async::Handle instance as a

named parameter, and is expected to return a Future that will eventually yield the newly-accepted socket

or handle instance, if such was provided.

METHODS
The following methods documented with a trailing call to −>get return Future instances.

acceptor
$acceptor = $listener−>acceptor

Returns the currently-set acceptor method name or code reference. This may be of interest to Loop

listen extension methods that wish to extend or wrap it.

sockname
$name = $listener−>sockname

Returns the sockname of the underlying listening socket

family
$family = $listener−>family

Returns the socket address family of the underlying listening socket

socktype
$socktype = $listener−>socktype

Returns the socket type of the underlying listening socket

listen
$listener−>listen(%params)

This method sets up a listening socket and arranges for the acceptor callback to be invoked each time a new

connection is accepted on the socket.

Most parameters given to this method are passed into the listen method of the IO::Async::Loop object.

In addition, the following arguments are also recognised directly:

on_listen => CODE

Optional. A callback that is invoked when the listening socket is ready. Similar to that on the

underlying loop method, except it is passed the listener object itself.

$on_listen−>($listener)

EXAMPLES
Listening on UNIX Sockets

The handle argument can be passed an existing socket already in listening mode, making it possible to

listen on other types of socket such as UNIX sockets.

use IO::Async::Listener;

use IO::Socket::UNIX;

use IO::Async::Loop;

my $loop = IO::Async::Loop−>new;

my $listener = IO::Async::Listener−>new(

on_stream => sub {

my (undef, $stream) = @_;

perl v5.30.0 2019-11-26 3

IO::Async::Listener(3pm) User Contributed Perl Documentation IO::Async::Listener(3pm)

$stream−>configure(

on_read => sub {

my ($self, $buffref, $eof) = @_;

$self−>write($$buffref);

$$buffref = "";

return 0;

},

);

$loop−>add($stream);

},

);

$loop−>add($listener);

my $socket = IO::Socket::UNIX−>new(

Local => "echo.sock",

Listen => 1,

) or die "Cannot make UNIX socket − $!\n";

$listener−>listen(

handle => $socket,

);

$loop−>run;

Passing Plain Socket Addresses
The addr or addrs parameters should contain a definition of a plain socket address in a form that the

IO::Async::OS extract_addrinfo method can use.

This example shows how to listen on TCP port 8001 on address 10.0.0.1:

$listener−>listen(

addr => {

family => "inet",

socktype => "stream",

port => 8001,

ip => "10.0.0.1",

},

...

);

This example shows another way to listen on a UNIX socket, similar to the earlier example:

$listener−>listen(

addr => {

family => "unix",

socktype => "stream",

path => "echo.sock",

},

...

);

Using A Kernel-Assigned Port Number
Rather than picking a specific port number, is it possible to ask the kernel to assign one arbitrarily that is

currently free. This can be done by requesting port number 0 (which is actually the default if no port

number is otherwise specified). To determine which port number the kernel actually picked, inspect the

perl v5.30.0 2019-11-26 4

IO::Async::Listener(3pm) User Contributed Perl Documentation IO::Async::Listener(3pm)

sockport accessor on the actual socket filehandle.

Either use the Future returned by the listen method:

$listener−>listen(

addr => { family => "inet" },

)−>on_done(sub {

my ($listener) = @_;

my $socket = $listener−>read_handle;

say "Now listening on port ", $socket−>sockport;

});

Or pass an on_listen continuation:

$listener−>listen(

addr => { family => "inet" },

on_listen => sub {

my ($listener) = @_;

my $socket = $listener−>read_handle;

say "Now listening on port ", $socket−>sockport;

},

);

AUTHOR
Paul Evans <leonerd@leonerd.org.uk>

perl v5.30.0 2019-11-26 5

