
HTML::Element::traverse(3pm) User Contributed Perl Documentation HTML::Element::traverse(3pm)

NAME
HTML::Element::traverse − discussion of HTML::Element’s traverse method

VERSION
This document describes version 5.07 of HTML::Element::traverse, released August 31, 2017 as part of

HTML-Tree.

SYNOPSIS
$element−>traverse is unnecessary and obscure.

Don't use it in new code.

DESCRIPTION
HTML::Element provides a method traverse that traverses the tree and calls user-specified callbacks

for each node, in pre− or post-order. Howev er, use of the method is quite superfluous: if you want to

recursively visit every node in the tree, it’s almost always simpler to write a subroutine does just that, than

it is to bundle up the pre− and/or post-order code in callbacks for the traverse method.

EXAMPLES
Suppose you want to traverse at/under a node $tree and give elements an ’id’ attribute unless they already

have one.

You can use the traverse method:

{

my $counter = 'x0000';

$start_node−>traverse(

[# Callbacks;

pre−order callback:

sub {

my $x = $_[0];

$x−>attr('id', $counter++) unless defined $x−>attr('id');

return HTML::Element::OK; # keep traversing

},

post−order callback:

undef

],

1, # don't call the callbacks for text nodes

);

}

or you can just be simple and clear (and not have to understand the calling format for traverse) by

writing a sub that traverses the tree by just calling itself:

{

my $counter = 'x0000';

sub give_id {

my $x = $_[0];

$x−>attr('id', $counter++) unless defined $x−>attr('id');

foreach my $c ($x−>content_list) {

give_id($c) if ref $c; # ignore text nodes

}

};

give_id($start_node);

}

See, isn’t that nice and clear?

But, if you really need to know:

perl v5.28.1 2019-01-13 1

HTML::Element::traverse(3pm) User Contributed Perl Documentation HTML::Element::traverse(3pm)

THE TRAVERSE METHOD
The traverse() method is a general object-method for traversing a tree or subtree and calling user-

specified callbacks. It accepts the following syntaxes:

$h−>traverse(\&callback)

or $h−>traverse(\&callback, $ignore_text)

or $h−>traverse([\&pre_callback,\&post_callback] , $ignore_text)

These all mean to traverse the element and all of its children. That is, this method starts at node $h, ‘‘pre-

order visits’’ $h, traverses its children, and then will ‘‘post-order visit’’ $h. ‘‘Visiting’’ means that the

callback routine is called, with these arguments:

$_[0] : the node (element or text segment),

$_[1] : a startflag, and

$_[2] : the depth

If the $ignore_text parameter is given and true, then the pre-order call will not be happen for text

content.

The startflag is 1 when we enter a node (i.e., in pre-order calls) and 0 when we leave the node (in post-order

calls).

Note, however, that post-order calls don’t happen for nodes that are text segments or are elements that are

prototypically empty (like ‘‘br’’, ‘‘hr’’, etc.).

If we visit text nodes (i.e., unless $ignore_text is given and true), then when text nodes are visited, we

will also pass two extra arguments to the callback:

$_[3] : the element that's the parent

of this text node

$_[4] : the index of this text node

in its parent's content list

Note that you can specify that the pre-order routine can be a different routine from the post-order one:

$h−>traverse([\&pre_callback,\&post_callback], ...);

You can also specify that no post-order calls are to be made, by providing a false value as the post-order

routine:

$h−>traverse([\&pre_callback,0], ...);

And similarly for suppressing pre-order callbacks:

$h−>traverse([0,\&post_callback], ...);

Note that these two syntaxes specify the same operation:

$h−>traverse([\&foo,\&foo], ...);

$h−>traverse(\&foo , ...);

The return values from calls to your pre− or post-order routines are significant, and are used to control

recursion into the tree.

These are the values you can return, listed in descending order of my estimation of their usefulness:

HTML::Element::OK, 1, or any other true value

...to keep on traversing.

Note that HTML::Element::OK et al are constants. So if you’re running under use strict (as I

hope you are), and you say: return HTML::Element::PRUEN the compiler will flag this as an

error (an unallowable bareword, specifically), whereas if you spell PRUNE correctly, the compiler will

not complain.

undef, 0, ’0’, ’’, or HTML::Element::PRUNE

...to block traversing under the current element’s content. (This is ignored if received from a post-

order callback, since by then the recursion has already happened.) If this is returned by a pre-order

perl v5.28.1 2019-01-13 2

HTML::Element::traverse(3pm) User Contributed Perl Documentation HTML::Element::traverse(3pm)

callback, no post-order callback for the current node will happen. (Recall that if your callback exits

with just return;, it is returning undef — at least in scalar context, and traverse always calls

your callbacks in scalar context.)

HTML::Element::ABORT

...to abort the whole traversal immediately. This is often useful when you’re looking for just the first

node in the tree that meets some criterion of yours.

HTML::Element::PRUNE_UP

...to abort continued traversal into this node and its parent node. No post-order callback for the current

or parent node will happen.

HTML::Element::PRUNE_SOFTLY

Like PRUNE, except that the post-order call for the current node is not blocked.

Almost every task to do with extracting information from a tree can be expressed in terms of traverse

operations (usually in only one pass, and usually paying attention to only pre-order, or to only post-order),

or operations based on traversing. (In fact, many of the other methods in this class are basically calls to

traverse() with particular arguments.)

The source code for HTML::Element and HTML::TreeBuilder contain several examples of the use of the

‘‘traverse’’ method to gather information about the content of trees and subtrees.

(Note: you should not change the structure of a tree while you are traversing it.)

[End of documentation for the traverse() method]

Trav ersing with Recursive Anonymous Routines

Now, if you’ve been reading Structure and Interpretation of Computer Programs too much, maybe you

ev en want a recursive lambda. Go ahead:

{

my $counter = 'x0000';

my $give_id;

$give_id = sub {

my $x = $_[0];

$x−>attr('id', $counter++) unless defined $x−>attr('id');

foreach my $c ($x−>content_list) {

$give_id−>($c) if ref $c; # ignore text nodes

}

};

$give_id−>($start_node);

undef $give_id;

}

It’s a bit nutty, and it’s still more concise than a call to the traverse method!

It is left as an exercise to the reader to figure out how to do the same thing without using a $give_id

symbol at all.

It is also left as an exercise to the reader to figure out why I undefine $give_id, above; and why I could

achieved the same effect with any of:

$give_id = 'I like pie!';

or...

$give_id = [];

or even;

$give_id = sub { print "Mmmm pie!\n" };

But not:

perl v5.28.1 2019-01-13 3

HTML::Element::traverse(3pm) User Contributed Perl Documentation HTML::Element::traverse(3pm)

$give_id = sub { print "I'm $give_id and I like pie!\n" };

nor...

$give_id = \$give_id;

nor...

$give_id = { 'pie' => \$give_id, 'mode' => 'a la' };

Doing Recursive Things Iteratively

Note that you may at times see an iterative implementation of pre-order traversal, like so:

{

my @to_do = ($tree); # start−node

while(@to_do) {

my $this = shift @to_do;

"Visit" the node:

$this−>attr('id', $counter++)

unless defined $this−>attr('id');

unshift @to_do, grep ref $_, $this−>content_list;

Put children on the stack −− they'll be visited next

}

}

This can under certain circumstances be more efficient than just a normal recursive routine, but at the cost

of being rather obscure. It gains efficiency by avoiding the overhead of function-calling, but since there are

several method dispatches however you do it (to attr and content_list), the overhead for a simple

function call is insignificant.

Pruning and Whatnot

The traverse method does have the fairly neat features of the ABORT, PRUNE_UP and

PRUNE_SOFTLY signals. None of these can be implemented totally straightforwardly with recursive

routines, but it is quite possible. ABORT−like behavior can be implemented either with using non-local

returning with eval/die:

my $died_on; # if you need to know where...

sub thing {

... visits $_[0]...

... maybe set $died_on to $_[0] and die "ABORT_TRAV" ...

... else call thing($child) for each child...

...any post−order visiting $_[0]...

}

eval { thing($node) };

if($@) {

if($@ =˜ m<ˆABORT_TRAV>) {

...it died (aborted) on $died_on...

} else {

die $@; # some REAL error happened

}

}

or you can just do it with flags:

perl v5.28.1 2019-01-13 4

HTML::Element::traverse(3pm) User Contributed Perl Documentation HTML::Element::traverse(3pm)

my($abort_flag, $died_on);

sub thing {

... visits $_[0]...

... maybe set $abort_flag = 1; $died_on = $_[0]; return;

foreach my $c ($_[0]−>content_list) {

thing($c);

return if $abort_flag;

}

...any post−order visiting $_[0]...

return;

}

$abort_flag = $died_on = undef;

thing($node);

...if defined $abort_flag, it died on $died_on

SEE ALSO
HTML::Element

AUTHOR
Current maintainers:

• Christopher J. Madsen <perl AT cjmweb.net>

• Jeff Fearn <jfearn AT cpan.org>

Original HTML-Tree author:

• Gisle Aas

Former maintainers:

• Sean M. Burke

• Andy Lester

• Pete Krawczyk <petek AT cpan.org>

You can follow or contribute to HTML-Tree’s dev elopment at

<https://github.com/kentfredric/HTML−Tree>.

COPYRIGHT
Copyright 2000,2001 Sean M. Burke

perl v5.28.1 2019-01-13 5

